Year 12

Maths A-level Induction work

Thank you for choosing to study Mathematics in the sixth form at Holmleigh Park High School.

Over the course, you will study topics in Pure Maths, Mechanics and Statistics. The Mathematics Department is committed to ensuring that you make good progress throughout your A level course. In order that you make the best possible start, we have prepared this booklet. It is vital that you spend time working through the questions in this booklet over the summer as you need to have a good knowledge of these topics before you commence your course in September. You should have met all the topics before at GCSE.

Work through what you need to from each chapter, making sure that you understand the examples. Then tackle the exercise to ensure you understand the topic thoroughly. The answers are at the back of the booklet. You will need to be organised so keep your work in a folder \& mark any queries to ask at the beginning of term.

In the first or second week of term you will take a test to check how well you understand these topics, so it is important that you have completed the booklet by then. Use this introduction to give you a good start to your Year 12 work that will help you to enjoy, and benefit from, the course. The more effort you put in, right from the start, the better you will do.

Contents

- Algebraic Expressions
- Expanding and factorising
- Laws of indices
- Surds
- Solving quadratic equations
- Simultaneous equations
- Linear and quadratic
- Linear inequalities
- Straight line graphs
- Trigonometry
- Sine rules
- Cosine rule
- Area of a triangle

Algebraic expressions

Objectives

After completing this chapter you should be able to:

- Multiply and divide integer powers
- Expand a single term over brackets and collect like terms
- Expand the product of two or three expressions
\rightarrow pages 3-4
- Factorise linear, quadratic and simple cubic expressions
\rightarrow pages 6-9
- Know and use the laws of indices
\rightarrow pages 9-11
- Simplify and use the rules of surds
\rightarrow pages 12-13
- Rationalise denominators
\rightarrow pages 13-16

1.1 Index laws

- You can use the laws of indices to simplify powers of the same base.
- $a^{m} \times \boldsymbol{a}^{n}=\boldsymbol{a}^{m+n}$
- $a^{m} \div a^{n}=a^{m-n}$
- $\left(a^{m}\right)^{n}=a^{m n}$
- $(a b)^{n}=a^{n} b^{n}$

Notation

This is the index, power or exponent.

Example 1

Simplify these expressions:
a $x^{2} \times x^{5}$
b $2 r^{2} \times 3 r^{3}$
c $\frac{b^{7}}{b^{4}}$
d $6 x^{5} \div 3 x^{3}$
e $\left(a^{3}\right)^{2} \times 2 a^{2}$
f $\left(3 x^{2}\right)^{3} \div x^{4}$
a $x^{2} \times x^{5}=x^{2+5}=x^{7}$ Use the rule $a^{m} \times a^{n}=a^{m+n}$ to simplify the index.
b $2 r^{2} \times 3 r^{3}=2 \times 3 \times r^{2} \times r^{3}$
$=6 \times r^{2+3}=6 r^{5}$
c $\frac{b^{7}}{b^{4}}=b^{7-4}=b^{3}$
d $6 x^{5} \div 3 x^{3}=\frac{6}{3} \times \frac{x^{5}}{x^{3}}$

$$
=2 \times x^{2}=2 x^{2}
$$

Rewrite the expression with the numbers together and the r terms together.

$$
\begin{aligned}
& 2 \times 3=6 \\
& r^{2} \times r^{3}=r^{2+3}
\end{aligned}
$$

Use the rule $a^{m} \div a^{n}=a^{m-n}$ to simplify the index.

$$
x^{5} \div x^{3}=x^{5-3}=x^{2}
$$

Use the rule $\left(a^{m}\right)^{n}=a^{m n}$ to simplify the index.
f $\frac{\left(3 x^{2}\right)^{3}}{x^{4}}=3^{3} \times \frac{\left(x^{2}\right)^{3}}{x^{4}}$ $=27 \times \frac{x^{6}}{x^{4}}=27 x^{2}$
$a^{6} \times a^{2}=a^{6+2}=a^{8}$

Use the rule $(a b)^{n}=a^{n} b^{n}$ to simplify the numerator.
$\left(x^{2}\right)^{3}=x^{2 \times 3}=x^{6}$
$\frac{x^{6}}{x^{4}}=x^{6-4}=x^{2}$

Example 2

Expand these expressions and simplify if possible:
a $-3 x(7 x-4)$
b $y^{2}\left(3-2 y^{3}\right)$
c $4 x\left(3 x-2 x^{2}+5 x^{3}\right)$
d $2 x(5 x+3)-5(2 x+3)$

Watch out A minus sign outside
brackets changes the sign of every term inside the brackets.

$-3 x \times 7 x=-21 x^{1+1}=-21 x^{2}$
$-3 x \times(-4)=+12 x$
$y^{2} \times\left(-2 y^{3}\right)=-2 y^{2+3}=-2 y^{5}$

Remember a minus sign outside the brackets changes the signs within the brackets.

Simplify $6 x-10 x$ to give $-4 x$.

Example 3

Simplify these expressions:
a $\frac{x^{7}+x^{4}}{x^{3}}$
b $\frac{3 x^{2}-6 x^{5}}{2 x}$
c $\frac{20 x^{7}+15 x^{3}}{5 x^{2}}$
a $\frac{x^{7}+x^{4}}{x^{3}}=\frac{x^{7}}{x^{3}}+\frac{x^{4}}{x^{3}}$
Divide each term of the numerator by x^{3}.
$=x^{7-3}+x^{4-3}=x^{4}+x$
x^{1} is the same as x.
b $\frac{3 x^{2}-6 x^{5}}{2 x}=\frac{3 x^{2}}{2 x}-\frac{6 x^{5}}{2 x}$
$=\frac{3}{2} x^{2-1}-3 x^{5-1}=\frac{3 x}{2}-3 x^{4}$
c $\frac{20 x^{7}+15 x^{3}}{5 x^{2}}=\frac{20 x^{7}}{5 x^{2}}+\frac{15 x^{3}}{5 x^{2}}$
$=4 x^{7-2}+3 x^{3-2}=4 x^{5}+3 x$
Divide each term of the numerator by $2 x$.

Simplify each fraction:
$\frac{3 x^{2}}{2 x}=\frac{3}{2} \times \frac{x^{2}}{x}=\frac{3}{2} \times x^{2-1}$
$-\frac{6 x^{5}}{2 x}=-\frac{6}{2} \times \frac{x^{5}}{x}=-3 \times x^{5-1}$

Divide each term of the numerator by $5 x^{2}$.

Exercise 1A

1 Simplify these expressions:
a $x^{3} \times x^{4}$
b $2 x^{3} \times 3 x^{2}$
c $\frac{k^{3}}{k^{2}}$
d $\frac{4 p^{3}}{2 p}$
e $\frac{3 x^{3}}{3 x^{2}}$
f $\left(y^{2}\right)^{5}$
g $10 x^{5} \div 2 x^{3}$
h $\left(p^{3}\right)^{2} \div p^{4}$
i $\left(2 a^{3}\right)^{2} \div 2 a^{3}$
j $8 p^{4} \div 4 p^{3}$
k $2 a^{4} \times 3 a^{5}$
l $\frac{21 a^{3} b^{7}}{7 a b^{4}}$
m $9 x^{2} \times 3\left(x^{2}\right)^{3}$
n $3 x^{3} \times 2 x^{2} \times 4 x^{6}$
o $7 a^{4} \times\left(3 a^{4}\right)^{2}$
p $\left(4 y^{3}\right)^{3} \div 2 y^{3}$
q $2 a^{3} \div 3 a^{2} \times 6 a^{5}$
r $3 a^{4} \times 2 a^{5} \times a^{3}$

2 Expand and simplify if possible:
a $9(x-2)$
b $x(x+9)$
c $-3 y(4-3 y)$
d $x(y+5)$
e $-x(3 x+5)$
f $-5 x(4 x+1)$
g $(4 x+5) x$
h $-3 y\left(5-2 y^{2}\right)$
i $-2 x(5 x-4)$
j $(3 x-5) x^{2}$
k $3(x+2)+(x-7)$
l $5 x-6-(3 x-2)$
m 4($\left.c+3 d^{2}\right)-3\left(2 c+d^{2}\right)$
n $\left(r^{2}+3 t^{2}+9\right)-\left(2 r^{2}+3 t^{2}-4\right)$
o $x\left(3 x^{2}-2 x+5\right)$
p $7 y^{2}\left(2-5 y+3 y^{2}\right)$
q $-2 y^{2}\left(5-7 y+3 y^{2}\right)$
r $7(x-2)+3(x+4)-6(x-2)$
s $5 x-3(4-2 x)+6$
t $3 x^{2}-x(3-4 x)+7$
u $4 x(x+3)-2 x(3 x-7)$
v $3 x^{2}(2 x+1)-5 x^{2}(3 x-4)$

3 Simplify these fractions:
a $\frac{6 x^{4}+10 x^{6}}{2 x}$
b $\frac{3 x^{5}-x^{7}}{x}$
c $\frac{2 x^{4}-4 x^{2}}{4 x}$
d $\frac{8 x^{3}+5 x}{2 x}$
e $\frac{7 x^{7}+5 x^{2}}{5 x}$
f $\frac{9 x^{5}-5 x^{3}}{3 x}$

1.2 Expanding brackets

To find the product of two expressions you multiply each term in one expression by each term in the other expression.

Multiplying each of the 2 terms in the first expression by each of the

Example 4

Expand these expressions and simplify if possible:
a $(x+5)(x+2)$
b $(x-2 y)\left(x^{2}+1\right)$
c $(x-y)^{2}$
d $(x+y)(3 x-2 y-4)$

$$
\begin{array}{|l|l}
\text { a } & (x+5)(x+2) \\
& =x^{2}+2 x+5 x+10 \\
& =x^{2}+7 x+10 \\
& \\
\text { b } & (x-2 y)\left(x^{2}+1\right) \\
& =x^{3}+x-2 x^{2} y-2 y
\end{array} \quad \text { Multiply } x \text { by }(x+2) \text { and then multiply } 5 \text { by }(x+2) .
$$

There are no like terms to collect.

$(x-y)^{2}$ means $(x-y)$ multiplied by itself.
$-x y-x y=-2 x y$

Multiply x by $(3 x-2 y-4)$ and then multiply y by ($3 x-2 y-4$).

Example 5

Expand these expressions and simplify if possible:
a $x(2 x+3)(x-7)$
b $x(5 x-3 y)(2 x-y+4)$
c $(x-4)(x+3)(x+1)$

```
a }x(2x+3)(x-7
    =(2\mp@subsup{x}{}{2}+3x)(x-7)
    =2\mp@subsup{x}{}{3}-14\mp@subsup{x}{}{2}+3\mp@subsup{x}{}{2}-21x
    =2\mp@subsup{x}{}{3}-11\mp@subsup{x}{}{2}-21x
```

```
b }x(5x-3y)(2x-y+4
    =(5\mp@subsup{x}{}{2}-3xy)(2x-y+4)
    =5\mp@subsup{x}{}{2}(2x-y+4)-3xy(2x-y+4)
    =10x 3}-5\mp@subsup{x}{}{2}y+20\mp@subsup{x}{}{2}-6\mp@subsup{x}{}{2}y+3x\mp@subsup{y}{}{2
        -12xy
    =10\mp@subsup{x}{}{3}-11\mp@subsup{x}{}{2}y+20\mp@subsup{x}{}{2}+3x\mp@subsup{y}{}{2}-12xy
```

c $(x-4)(x+3)(x+1)$
$=\left(x^{2}-x-12\right)(x+1)$
$=x^{2}(x+1)-x(x+1)-12(x+1)$
$=x^{3}+x^{2}-x^{2}-x-12 x-12$
$=x^{3}-13 x-12$

Start by expanding one pair of brackets:
$x(2 x+3)=2 x^{2}+3 x$

You could also have expanded the second pair of brackets first: $(2 x+3)(x-7)=2 x^{2}-11 x-21$ Then multiply by x.

Be careful with minus signs. You need to change every sign in the second pair of brackets when you multiply it out.

Choose one pair of brackets to expand first, for example:

$$
\begin{aligned}
(x-4)(x+3) & =x^{2}+3 x-4 x-12 \\
& =x^{2}-x-12
\end{aligned}
$$

You multiplied together three linear terms, so the final answer contains an x^{3} term.

Exercise

1 Expand and simplify if possible:
a $(x+4)(x+7)$
b $(x-3)(x+2)$
c $(x-2)^{2}$
d $(x-y)(2 x+3)$
e $(x+3 y)(4 x-y)$
f $(2 x-4 y)(3 x+y)$
g $(2 x-3)(x-4)$
h $(3 x+2 y)^{2}$
i $(2 x+8 y)(2 x+3)$
j $(x+5)(2 x+3 y-5)$
$\mathbf{k}(x-1)(3 x-4 y-5)$
l $(x-4 y)(2 x+y+5)$
m $(x+2 y-1)(x+3)$
n $(2 x+2 y+3)(x+6)$
o $(4-y)(4 y-x+3)$
p $(4 y+5)(3 x-y+2)$
q $(5 y-2 x+3)(x-4)$
r $(4 y-x-2)(5-y)$

2 Expand and simplify if possible:
a $5(x+1)(x-4)$
b $7(x-2)(2 x+5)$
c $3(x-3)(x-3)$
d $x(x-y)(x+y)$
e $x(2 x+y)(3 x+4)$
f $y(x-5)(x+1)$
g $y(3 x-2 y)(4 x+2)$
h $y(7-x)(2 x-5)$
i $x(2 x+y)(5 x-2)$
j $x(x+2)(x+3 y-4)$
k $y(2 x+y-1)(x+5)$
l $y(3 x+2 y-3)(2 x+1)$
m $x(2 x+3)(x+y-5)$
n $2 x(3 x-1)(4 x-y-3)$
o $3 x(x-2 y)(2 x+3 y+5)$
p $(x+3)(x+2)(x+1)$
q $(x+2)(x-4)(x+3)$
r $(x+3)(x-1)(x-5)$
s $(x-5)(x-4)(x-3)$
t $(2 x+1)(x-2)(x+1)$
u $(2 x+3)(3 x-1)(x+2)$
v $(3 x-2)(2 x+1)(3 x-2)$
w $(x+y)(x-y)(x-1)$
x $(2 x-3 y)^{3}$
(P) 3 The diagram shows a rectangle with a square cut out.

The rectangle has length $3 x-y+4$ and width $x+7$.
The square has length $x-2$.
Find an expanded and simplified expression for the shaded area.

Problem-solving

Use the same strategy as you would use if the lengths were given as numbers:

(P) 4 A cuboid has dimensions $x+2 \mathrm{~cm}, 2 x-1 \mathrm{~cm}$ and $2 x+3 \mathrm{~cm}$.

Show that the volume of the cuboid is $4 x^{3}+12 x^{2}+5 x-6 \mathrm{~cm}^{3}$.

E/P 5 Given that $(2 x+5 y)(3 x-y)(2 x+y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$, where a, b, c and d are constants, find the values of a, b, c and d.

Challenge

Expand and simplify $(x+y)^{4}$.

Links You can use the binomial expansion to expand expressions like $(x+y)^{4}$ quickly. \rightarrow Section 8.3

1.3 Factorising

You can write expressions as a product of their factors.

- Factorising is the opposite of expanding brackets.

Expanding brackets

$4 x(2 x+y)=8 x^{2}+4 x y$
$(x+5)^{3}=x^{3}+15 x^{2}+75 x+125$
$(x+2 y)(x-5 y)=x^{2}-3 x y-10 y^{2}$

Factorise these expressions completely:
a $3 x+9$
b $x^{2}-5 x$
c $8 x^{2}+20 x$
d $9 x^{2} y+15 x y^{2}$
e $3 x^{2}-9 x y$

3 is a common factor of $3 x$ and 9 .
x is a common factor of x^{2} and $-5 x$.

4 and x are common factors of $8 x^{2}$ and $20 x$. So take $4 x$ outside the brackets.
$3, x$ and y are common factors of $9 x^{2} y$ and $15 x y^{2}$. So take $3 x y$ outside the brackets.
x and $-3 y$ have no common factors so this expression is completely factorised.

- A quadratic expression has the form $a x^{2}+b x+c$ where a, b and c are real numbers and $\boldsymbol{a} \neq \mathbf{0}$.

To factorise a quadratic expression:

- Find two factors of $a c$ that add up to b
- Rewrite the b term as a sum of these two \qquad For the expression $2 x^{2}+5 x-3, a c=-6=-1 \times 6$ and $-1+6=5=b$. $2 x^{2}-x+6 x-3$ factors
- Factorise each pair of terms $=x(2 x-1)+3(2 x-1)$
- Take out the common factor $\quad=(x+3)(2 x-1)$
- $x^{2}-y^{2}=(x+y)(x-y)$

Notation Real numbers are all the positive and negative numbers, or zero, including fractions and surds.

```
b \(x^{2}+6 x+8\)
    \(=x^{2}+2 x+4 x+8\) ac \(=8\) and \(2+4=6=b\).
    \(=x(x+2)+4(x+2)\) Factorise.
    \(=(x+2)(x+4)\)
c \(6 x^{2}-11 x-10\)
    \(=6 x^{2}-15 x+4 x-10\)
    \(=3 x(2 x-5)+2(2 x-5)\)
    \(=(2 x-5)(3 x+2)\)
d \(x^{2}-25\) This is the difference of two squares as the two
    \(=x^{2}-5^{2}\)
    \(=(x+5)(x-5)\)
5) \(\longleftarrow\)
e \(4 x^{2}-9 y^{2}\)
    \(=2^{2} x^{2}-3^{2} y^{2}\)
    \(=(2 x+3 y)(2 x-3 y)\)
```


Example 8

Factorise completely:
a $x^{3}-2 x^{2}$
b $x^{3}-25 x$
c $x^{3}+3 x^{2}-10 x$
a $x^{3}-2 x^{2}=x^{2}(x-2)$
b $x^{3}-25 x=x\left(x^{2}-25\right)$

$$
\begin{aligned}
& =x\left(x^{2}-5^{2}\right) \\
& =x(x+5)(x-5)
\end{aligned}
$$

c $x^{3}+3 x^{2}-10 x=x\left(x^{2}+3 x-10\right)$ \qquad
$=x(x+5)(x-2)$

Exercise 1C

You can't factorise this any further.
x is a common factor of x^{3} and $-25 x$. So take x outside the brackets.
$x^{2}-25$ is the difference of two squares.

Write the expression as a product of x and a quadratic factor.

Factorise the quadratic to get three linear factors.
1 Factorise these expressions completely:
a $4 x+8$
b $6 x-24$
c $20 x+15$
d $2 x^{2}+4$
e $4 x^{2}+20$
f $6 x^{2}-18 x$
g $x^{2}-7 x$
h $2 x^{2}+4 x$
i $3 x^{2}-x$
j $6 x^{2}-2 x$
k $10 y^{2}-5 y$
l $35 x^{2}-28 x$
m $x^{2}+2 x$
n $3 y^{2}+2 y$
o $4 x^{2}+12 x$
p $5 y^{2}-20 y$
q $9 x y^{2}+12 x^{2} y$
r $6 a b-2 a b^{2}$
s $5 x^{2}-25 x y$
t $12 x^{2} y+8 x y^{2}$
u $15 y-20 y z^{2}$
v $12 x^{2}-30$
w $x y^{2}-x^{2} y$
x $12 y^{2}-4 y x$

2 Factorise:
a $x^{2}+4 x$
b $2 x^{2}+6 x$
c $x^{2}+11 x+24$
d $x^{2}+8 x+12$
e $x^{2}+3 x-40$
f $x^{2}-8 x+12$
g $x^{2}+5 x+6$
h $x^{2}-2 x-24$
i $x^{2}-3 x-10$
j $x^{2}+x-20$
k $2 x^{2}+5 x+2$
l $3 x^{2}+10 x-8$
m $5 x^{2}-16 x+3$
n $6 x^{2}-8 x-8$
o $2 x^{2}+7 x-15$
p $2 x^{4}+14 x^{2}+24$
q $x^{2}-4$
r $x^{2}-49$
s $4 x^{2}-25$
t $9 x^{2}-25 y^{2}$
v $2 x^{2}-50$
w $6 x^{2}-10 x+4$

Hint For part \mathbf{n}, take 2 out as a common

 factor first. For part \mathbf{p}, let $y=x^{2}$.u $36 x^{2}-4$
x $15 x^{2}+42 x-9$
3 Factorise completely:
a $x^{3}+2 x$
b $x^{3}-x^{2}+x$
c $x^{3}-5 x$
d $x^{3}-9 x$
e $x^{3}-x^{2}-12 x$
f $x^{3}+11 x^{2}+30 x$
g $x^{3}-7 x^{2}+6 x$
h $x^{3}-64 x$
j $2 x^{3}+13 x^{2}+15 x$
k $x^{3}-4 x$
i $2 x^{3}-5 x^{2}-3 x$
l $3 x^{3}+27 x^{2}+60 x$
(E/P) 4 Factorise completely $x^{4}-y^{4}$.
(2 marks)

Problem-solving

Watch out for terms that can be written as a function of a function: $x^{4}=\left(x^{2}\right)^{2}$
(E) 5 Factorise completely $6 x^{3}+7 x^{2}-5 x$.

Challenge

Write $4 x^{4}-13 x^{2}+9$ as the product of four linear factors.

1.4 Negative and fractional indices

Indices can be negative numbers or fractions.
$x^{\frac{1}{2}} \times x^{\frac{1}{2}}=x^{\frac{1}{2}+\frac{1}{2}}=x^{1}=x$,
similarly $\underbrace{x^{\frac{1}{n}} \times x^{\frac{1}{n}} \times \ldots \times x^{\frac{1}{n}}}=x^{\frac{1}{n}+\frac{1}{n}+\ldots+\frac{1}{n}}=x^{1}=x$

Notation Rational

numbers are those that can be written as $\frac{a}{b}$ where a and b are integers.

- You can use the laws of indices with any rational power.

- $\boldsymbol{a}^{\frac{1}{m}}=\sqrt[m]{a}$

Notation $a^{\frac{1}{2}}=\sqrt{a}$ is the positive square root of a. For example $9^{\frac{1}{2}}=\sqrt{9}=3$ but $9 \frac{1}{1} \neq-3$.

- $\boldsymbol{a}^{m}=\sqrt[m]{\boldsymbol{a}^{n}}$
- $a^{-m}=\frac{1}{a^{m}}$
- $a^{0}=1$

Simplify:

a $\frac{x^{3}}{x^{-3}}$
b $x^{\frac{1}{2}} \times x^{\frac{3}{2}}$
c $\left(x^{3}\right)^{\frac{2}{3}}$
d $2 x^{1.5} \div 4 x^{-0.25}$
e $\sqrt[3]{125 x^{6}}$
f $\frac{2 x^{2}-x}{x^{5}}$

Example 10

Evaluate:
a $9^{\frac{1}{2}}$
b $64^{\frac{1}{3}}$
c $49^{\frac{3}{2}}$
d $25^{-\frac{3}{2}}$

a $9^{\frac{1}{2}}$	$=\sqrt{9}=3$
b $64^{\frac{1}{3}}$	$=\sqrt[3]{64}=4$
c $49^{\frac{3}{2}}$	$=(\sqrt{49})^{3}$
7^{3}	$=343$
d $25^{-\frac{3}{2}}$	$=\frac{1}{25^{\frac{3}{2}}}=\frac{1}{(\sqrt{25})^{3}}$
$=\frac{1}{5^{3}}$	$=\frac{1}{125}$

Using $a^{\frac{1}{m}}=\sqrt[m]{a} \cdot 9^{\frac{1}{2}}=\sqrt{9}$

This means the cube root of 64 .

Using $a^{\frac{n}{m}}=\sqrt[m]{a^{n}}$.
This means the square root of 49 , cubed.
Using $a^{-m}=\frac{1}{a^{m}}$

Online Use your calculator to enter negative and fractional powers.

Example 11

Given that $y=\frac{1}{16} x^{2}$ express each of the following in the form $k x^{n}$, where k and n are constants.
a $y^{\frac{1}{2}}$
b $4 y^{-1}$
a $y^{\frac{1}{2}}=\left(\frac{1}{16} x^{2}\right)$
Substitute $y=\frac{1}{16} x^{2}$ into $y^{\frac{1}{2}}$.

$$
=\frac{1}{\sqrt{16}} x^{2 \times \frac{1}{2}}=\frac{x}{4}
$$

$$
\left(\frac{1}{16}\right)^{\frac{1}{2}}=\frac{1}{\sqrt{16}} \text { and }\left(x^{2}\right)^{\frac{1}{2}}=x^{2 \times \frac{1}{2}}
$$

b $4 y^{-1}=4\left(\frac{1}{16} x^{2}\right)^{-1}$

$$
=4\left(\frac{1}{16}\right)^{-1} x^{2 \times(-1)}=4 \times 16 x^{-2} \quad\left(\frac{1}{16}\right)^{-1}=16 \text { and } x^{2 \times-1}=x^{-2}
$$

$$
=64 x^{-2}
$$

Problem-solving

Check that your answers are in the correct form. If k and n are constants they could be positive or negative, and they could be integers, fractions or surds.

Exercise 1D

1 Simplify:
a $x^{3} \div x^{-2}$
b $x^{5} \div x^{7}$
c $x^{\frac{3}{2}} \times x^{\frac{5}{2}}$
d $\left(x^{2}\right)^{\frac{3}{2}}$
e $\left(x^{3}\right)^{\frac{5}{3}}$
f $3 x^{0.5} \times 4 x^{-0.5}$
g $9 x^{\frac{2}{3}} \div 3 x^{\frac{1}{6}}$
h $5 x^{\frac{7}{3}} \div x^{\frac{2}{3}}$
i $3 x^{4} \times 2 x^{-5}$
j $\sqrt{x} \times \sqrt[3]{x}$
k $(\sqrt{x})^{3} \times(\sqrt[3]{x})^{4}$
l $\frac{(\sqrt[3]{x})^{2}}{\sqrt{x}}$

2 Evaluate:
a $25^{\frac{1}{2}}$
b $81^{\frac{3}{2}}$
c $27^{\frac{1}{3}}$
d 4^{-2}
e $9^{-\frac{1}{2}}$
f $(-5)^{-3}$
g $\left(\frac{3}{4}\right)^{0}$
h 1296^{3}
i $\left(\frac{25}{16}\right)^{\frac{3}{2}}$
j $\left(\frac{27}{8}\right)^{\frac{2}{3}}$
k $\left(\frac{6}{5}\right)^{-1}$
l $\left(\frac{343}{512}\right)^{-\frac{2}{3}}$

3 Simplify:
a $\left(64 x^{10}\right)^{\frac{1}{2}}$
b $\frac{5 x^{3}-2 x^{2}}{x^{5}}$
c $\left(125 x^{12}\right)^{\frac{1}{3}}$
d $\frac{x+4 x^{3}}{x^{3}}$
e $\frac{2 x+x^{2}}{x^{4}}$
f $\left(\frac{4}{9} x^{4}\right)^{\frac{3}{2}}$
g $\frac{9 x^{2}-15 x^{5}}{3 x^{3}}$
h $\frac{5 x+3 x^{2}}{15 x^{3}}$
(E) 4 a Find the value of $81^{\frac{1}{4}}$.
b Simplify $x\left(2 x^{-\frac{1}{3}}\right)^{4}$.
(E) 5 Given that $y=\frac{1}{8} x^{3}$ express each of the following in the form $k x^{n}$, where k and n are constants.
a $y^{\frac{1}{3}}$
(2 marks)
b $\frac{1}{2} y^{-2}$

1.5 Surds

If n is an integer that is not a square number, then any multiple of \sqrt{n} is called a surd.
Examples of surds are $\sqrt{2}, \sqrt{19}$ and $5 \sqrt{2}$.

Surds are examples of irrational numbers.
The decimal expansion of a surd is never-ending and never repeats, for example $\sqrt{2}=1.414213562 \ldots$

Notation Irrational numbers cannot be written

 in the form $\frac{a}{b}$ where a and b are integers.Surds are examples of irrational numbers.

You can use surds to write exact answers to calculations.

- You can manipulate surds using these rules:

- $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

Example 12

Simplify:
a $\sqrt{12}$
b $\frac{\sqrt{20}}{2}$
c $5 \sqrt{6}-2 \sqrt{24}+\sqrt{294}$

```
a \(\sqrt{12}=\sqrt{(4 \times 3)}\)
    \(=\sqrt{4} \times \sqrt{3}=2 \sqrt{3}\)
b \(\frac{\sqrt{20}}{2}=\frac{\sqrt{4} \times \sqrt{5}}{2}\)
    \(=\frac{2 \times \sqrt{5}}{2}=\sqrt{5}\)
c \(5 \sqrt{6}-2 \sqrt{24}+\sqrt{294}\)
    \(=5 \sqrt{6}-2 \sqrt{6} \sqrt{4}+\sqrt{6} \times \sqrt{49}\)
    \(=\sqrt{6}(5-2 \sqrt{4}+\sqrt{49})\)
    \(=\sqrt{6}(5-2 \times 2+7)\)
    \(=\sqrt{6}(8)\)
    \(=8 \sqrt{6}\)
```

Look for a factor of 12 that is a square number.
Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b} \cdot \sqrt{4}=2$
$\sqrt{20}=\sqrt{4} \times \sqrt{5}$
$\sqrt{4}=2$

Cancel by 2.
$\sqrt{6}$ is a common factor.

Work out the square roots $\sqrt{4}$ and $\sqrt{49}$.
$5-4+7=8$

Expand and simplify if possible:
a $\sqrt{2}(5-\sqrt{3})$
b $(2-\sqrt{3})(5+\sqrt{3})$

Exercise 1E

1 Do not use your calculator for this exercise. Simplify:
a $\sqrt{28}$
b $\sqrt{72}$
c $\sqrt{50}$
d $\sqrt{32}$
e $\sqrt{90}$
f $\frac{\sqrt{12}}{2}$
g $\frac{\sqrt{27}}{3}$
h $\sqrt{20}+\sqrt{80}$
i $\sqrt{200}+\sqrt{18}-\sqrt{72}$
j $\sqrt{175}+\sqrt{63}+2 \sqrt{28}$
k $\sqrt{28}-2 \sqrt{63}+\sqrt{7}$
l $\sqrt{80}-2 \sqrt{20}+3 \sqrt{45}$
m $3 \sqrt{80}-2 \sqrt{20}+5 \sqrt{45}$
n $\frac{\sqrt{44}}{\sqrt{11}}$
o $\sqrt{12}+3 \sqrt{48}+\sqrt{75}$

2 Expand and simplify if possible:
a $\sqrt{3}(2+\sqrt{3})$
b $\sqrt{5}(3-\sqrt{3})$
c $\sqrt{2}(4-\sqrt{5})$
d $(2-\sqrt{2})(3+\sqrt{5})$
e $(2-\sqrt{3})(3-\sqrt{7})$
f $(4+\sqrt{5})(2+\sqrt{5})$
g $(5-\sqrt{3})(1-\sqrt{3})$
h $(4+\sqrt{3})(2-\sqrt{3})$
i $(7-\sqrt{11})(2+\sqrt{11})$
(E) 3 Simplify $\sqrt{75}-\sqrt{12}$ giving your answer in the form $a \sqrt{3}$, where a is an integer.

1.6 Rationalising denominators

If a fraction has a surd in the denominator, it is sometimes useful to rearrange it so that the denominator is a rational number. This is called rationalising the denominator.

- The rules to rationalise denominators are:

- For fractions in the form $\frac{1}{\sqrt{a}}$, multiply the numerator and denominator by \sqrt{a}.
- For fractions in the form $\frac{1}{a+\sqrt{b}}$, multiply the numerator and denominator by $a-\sqrt{b}$.
- For fractions in the form $\frac{1}{a-\sqrt{b}}$, multiply the numerator and denominator by $a+\sqrt{b}$.

Example 14

Rationalise the denominator of:
a $\frac{1}{\sqrt{3}}$
b $\frac{1}{3+\sqrt{2}}$
c $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}$
d $\frac{1}{(1-\sqrt{3})^{2}}$
a $\frac{1}{\sqrt{3}}=\frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$

$$
=\frac{\sqrt{3}}{3}
$$

$\sqrt{3} \times \sqrt{3}=(\sqrt{3})^{2}=3$
b $\frac{1}{3+\sqrt{2}}=\frac{1 \times(3-\sqrt{2})}{(3+\sqrt{2})(3-\sqrt{2})}$

$$
\begin{array}{l|l}
=\frac{3-\sqrt{2}}{9-3 \sqrt{2}+3 \sqrt{2}-2} & \sqrt{2} \times \sqrt{2}=2 \\
=\frac{3-\sqrt{2}}{7} & 9-2=7,-3 \sqrt{2}+3 \sqrt{2}=0
\end{array}
$$

c $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}=\frac{(\sqrt{5}+\sqrt{2})(\sqrt{5}+\sqrt{2})}{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})}$ \qquad Multiply numerator and denominator by $\sqrt{5}+\sqrt{2}$.

$$
\begin{aligned}
& =\frac{5+\sqrt{5} \sqrt{2}+}{5} \\
& =\frac{7+2 \sqrt{10}}{3} .
\end{aligned}
$$

$-\sqrt{2} \sqrt{5}$ and $\sqrt{5} \sqrt{2}$ cancel each other out.
$\sqrt{5} \sqrt{2}=\sqrt{10}$
d $\frac{1}{(1-\sqrt{3})^{2}}=\frac{1}{(1-\sqrt{3})(1-\sqrt{3})}$
$=\frac{1}{1-\sqrt{3}-\sqrt{3}+\sqrt{9}}$ \longmapsto

Expand the brackets.
$=\frac{1}{4-2 \sqrt{3}}$
$=\frac{1 \times(4+2 \sqrt{3})}{(4-2 \sqrt{3})(4+2 \sqrt{3})}$ Multiply the numerator and denominator by
$=\frac{1 \times(4+2 \sqrt{3})(4+2 \sqrt{3})}{(4-2 \sqrt{3} .} 4+2 \sqrt{3}$.
$=\frac{4+2 \sqrt{3}}{16+8 \sqrt{3}-8 \sqrt{3}-12} \quad \square \sqrt{3} \times \sqrt{3}=3$
$=\frac{4+2 \sqrt{3}}{4}=\frac{2+\sqrt{3}}{2}$
$16-12=4,8 \sqrt{3}-8 \sqrt{3}=0$

1 Simplify:
a $\frac{1}{\sqrt{5}}$
b $\frac{1}{\sqrt{11}}$
c $\frac{1}{\sqrt{2}}$
d $\frac{\sqrt{3}}{\sqrt{15}}$
e $\frac{\sqrt{12}}{\sqrt{48}}$
f $\frac{\sqrt{5}}{\sqrt{80}}$
g $\frac{\sqrt{12}}{\sqrt{156}}$
h $\frac{\sqrt{7}}{\sqrt{63}}$

2 Rationalise the denominators and simplify:
a $\frac{1}{1+\sqrt{3}}$
b $\frac{1}{2+\sqrt{5}}$
c $\frac{1}{3-\sqrt{7}}$
d $\frac{4}{3-\sqrt{5}}$
e $\frac{1}{\sqrt{5}-\sqrt{3}}$
f $\frac{3-\sqrt{2}}{4-\sqrt{5}}$
g $\frac{5}{2+\sqrt{5}}$
h $\frac{5 \sqrt{2}}{\sqrt{8}-\sqrt{7}}$
i $\frac{11}{3+\sqrt{11}}$
j $\frac{\sqrt{3}-\sqrt{7}}{\sqrt{3}+\sqrt{7}}$
k $\frac{\sqrt{17}-\sqrt{11}}{\sqrt{17}+\sqrt{11}}$
1 $\frac{\sqrt{41}+\sqrt{29}}{\sqrt{41}-\sqrt{29}}$
m $\frac{\sqrt{2}-\sqrt{3}}{\sqrt{3}-\sqrt{2}}$

3 Rationalise the denominators and simplify:
a $\frac{1}{(3-\sqrt{2})^{2}}$
b $\frac{1}{(2+\sqrt{5})^{2}}$
c $\frac{4}{(3-\sqrt{2})^{2}}$
d $\frac{3}{(5+\sqrt{2})^{2}}$
e $\frac{1}{(5+\sqrt{2})(3-\sqrt{2})}$
f $\frac{2}{(5-\sqrt{3})(2+\sqrt{3})}$

E/P 4 Simplify $\frac{3-2 \sqrt{5}}{\sqrt{5}-1}$ giving your answer in the form $p+q \sqrt{5}$, where p and q are rational numbers.
(4 marks)

Problem-solving

You can check that your answer is in the correct form by writing down the values of p and q and checking that they are rational numbers.

Mixed exercise 1

1 Simplify:
a $y^{3} \times y^{5}$
b $3 x^{2} \times 2 x^{5}$
c $\left(4 x^{2}\right)^{3} \div 2 x^{5}$
d $4 b^{2} \times 3 b^{3} \times b^{4}$

2 Expand and simplify if possible:
a $(x+3)(x-5)$
b $(2 x-7)(3 x+1)$
c $(2 x+5)(3 x-y+2)$

3 Expand and simplify if possible:
a $x(x+4)(x-1)$
b $(x+2)(x-3)(x+7)$
c $(2 x+3)(x-2)(3 x-1)$

4 Expand the brackets:
a $3(5 y+4)$
b $5 x^{2}\left(3-5 x+2 x^{2}\right)$
c $5 x(2 x+3)-2 x(1-3 x)$
d $3 x^{2}(1+3 x)-2 x(3 x-2)$

5 Factorise these expressions completely:
a $3 x^{2}+4 x$
b $4 y^{2}+10 y$
c $x^{2}+x y+x y^{2}$
d $8 x y^{2}+10 x^{2} y$

6 Factorise:
a $x^{2}+3 x+2$
b $3 x^{2}+6 x$
c $x^{2}-2 x-35$
d $2 x^{2}-x-3$
e $5 x^{2}-13 x-6$
f $6-5 x-x^{2}$

7 Factorise:
a $2 x^{3}+6 x$
b $x^{3}-36 x$
c $2 x^{3}+7 x^{2}-15 x$

8 Simplify:
a $9 x^{3} \div 3 x^{-3}$
b $\left(4^{\frac{3}{2}}\right)^{\frac{1}{3}}$
c $3 x^{-2} \times 2 x^{4}$
d $3 x^{\frac{1}{3}} \div 6 x^{\frac{2}{3}}$

9 Evaluate:
a $\left(\frac{8}{27}\right)^{\frac{2}{3}}$
b $\left(\frac{225}{289}\right)^{\frac{3}{2}}$

10 Simplify:
a $\frac{3}{\sqrt{63}}$
b $\sqrt{20}+2 \sqrt{45}-\sqrt{80}$

11 a Find the value of $35 x^{2}+2 x-48$ when $x=25$.
b By factorising the expression, show that your answer to part a can be written as the product of two prime factors.

12 Expand and simplify if possible:
a $\sqrt{2}(3+\sqrt{5})$
b $(2-\sqrt{5})(5+\sqrt{3})$
c $(6-\sqrt{2})(4-\sqrt{7})$

13 Rationalise the denominator and simplify:
a $\frac{1}{\sqrt{3}}$
b $\frac{1}{\sqrt{2}-1}$
c $\frac{3}{\sqrt{3}-2}$
d $\frac{\sqrt{23}-\sqrt{37}}{\sqrt{23}+\sqrt{37}}$
e $\frac{1}{(2+\sqrt{3})^{2}}$
f $\frac{1}{(4-\sqrt{7})^{2}}$

14 a Given that $x^{3}-x^{2}-17 x-15=(x+3)\left(x^{2}+b x+c\right)$, where b and c are constants, work out the values of b and c.
b Hence, fully factorise $x^{3}-x^{2}-17 x-15$.
(E) 15 Given that $y=\frac{1}{64} x^{3}$ express each of the following in the form $k x^{n}$, where k and n are constants.
a $y^{\frac{1}{3}}$
b $4 y^{-1}$
(E/P) 16 Show that $\frac{5}{\sqrt{75}-\sqrt{50}}$ can be written in the form $\sqrt{a}+\sqrt{b}$, where a and b are integers.
(E) 17 Expand and simplify $(\sqrt{11}-5)(5-\sqrt{11})$.
(E) 18 Factorise completely $x-64 x^{3}$.
(E/P) 19 Express $27^{2 x+1}$ in the form 3^{y}, stating y in terms of x.
(E/P) 20 Solve the equation $8+x \sqrt{12}=\frac{8 x}{\sqrt{3}}$
Give your answer in the form $a \sqrt{b}$ where a and b are integers.
(P) 21 A rectangle has a length of $(1+\sqrt{3}) \mathrm{cm}$ and area of $\sqrt{12} \mathrm{~cm}^{2}$.

Calculate the width of the rectangle in cm .
Express your answer in the form $a+b \sqrt{3}$, where a and b are integers to be found.
(E) 22 Show that $\frac{(2-\sqrt{x})^{2}}{\sqrt{x}}$ can be written as $4 x^{-\frac{1}{2}}-4+x^{\frac{1}{2}}$.
(E/P) 23 Given that $243 \sqrt{3}=3^{a}$, find the value of a.
(E/P) 24 Given that $\frac{4 x^{3}+x^{\frac{3}{2}}}{\sqrt{x}}$ can be written in the form $4 x^{a}+x^{b}$, write down the value of a and the value of b.

Challenge

a Simplify $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})$.
b Hence show that $\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots+\frac{1}{\sqrt{24}+\sqrt{25}}=4$

Summary of key points

1 You can use the laws of indices to simplify powers of the same base.

- $a^{m} \times a^{n}=a^{m+n}$
- $a^{m} \div a^{n}=a^{m-n}$
- $\left(a^{m}\right)^{n}=a^{m n}$
- $(a b)^{n}=a^{n} b^{n}$

2 Factorising is the opposite of expanding brackets.
3 A quadratic expression has the form $a x^{2}+b x+c$ where a, b and c are real numbers and $a \neq 0$.
$4 x^{2}-y^{2}=(x+y)(x-y)$
5 You can use the laws of indices with any rational power.

- $a^{\frac{1}{m}}=\sqrt[m]{a}$
- $a^{\frac{n}{m}}=\sqrt[m]{a^{n}}$
- $a^{-m}=\frac{1}{a^{m}}$
- $a^{0}=1$

6 You can manipulate surds using these rules:

- $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$

$$
\text { - } \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

7 The rules to rationalise denominators are:

- Fractions in the form $\frac{1}{\sqrt{a}}$, multiply the numerator and denominator by \sqrt{a}.
- Fractions in the form $\frac{1}{a+\sqrt{b}}$, multiply the numerator and denominator by $a-\sqrt{b}$.
- Fractions in the form $\frac{1}{a-\sqrt{b}}$, multiply the numerator and denominator by $a+\sqrt{b}$.

Quadratics

Objectives

After completing this chapter you should be able to:

- Solve quadratic equations using factorisation, the quadratic formula and completing the square
\rightarrow pages 19-24
- Read and use $\mathrm{f}(x)$ notation when working with functions
\rightarrow pages 25-27
- Sketch the graph and find the turning point of a quadratic function
\rightarrow pages 27-30
- Find and interpret the discriminant of a quadratic expression

$$
\rightarrow \text { pages 30-32 }
$$

- Use and apply models that involve quadratic functions
\rightarrow pages 32-35

1 Solve the following equations:
a $3 x+6=x-4$
b $5(x+3)=6(2 x-1)$
c $4 x^{2}=100$
d $(x-8)^{2}=64$
\leftarrow GCSE Mathematics
2 Factorise the following expressions:
a $x^{2}+8 x+15$
b $x^{2}+3 x-10$
c $3 x^{2}-14 x-5$
d $x^{2}-400$
\leftarrow Section 1.3

3 Sketch the graphs of the following equations, labelling the points where each graph crosses the axes:
a $y=3 x-6$
b $y=10-2 x$
c $x+2 y=18$
d $y=x^{2}$
\leftarrow GCSE Mathematics
4 Solve the following inequalities:
a $x+8<11$
b $2 x-5 \geqslant 13$
c $4 x-7 \leqslant 2(x-1)$
d $4-x<11$
\leftarrow GCSE Mathematics

Quadratic functions are used to model projectile motion. Whenever an object
is thrown or launched, its path will approximately follow the shape of a parabola.
\rightarrow Mixed exercise Q11

2.1 Solving quadratic equations

A quadratic equation can be written in the form $a x^{2}+b x+c=0$, where a, b and c are real constants, and $a \neq 0$. Quadratic equations can have one, two, or no real solutions.

- To solve a quadratic equation by factorising:

- Write the equation in the form $a x^{2}+b x+c=0$
- Factorise the left-hand side
- Set each factor equal to zero and solve to find the value(s) of \boldsymbol{x}

Example 1

Solve the following equations:
a $x^{2}-2 x-15=0$
b $x^{2}=9 x$
c $6 x^{2}+13 x-5=0$
d $x^{2}-5 x+18=2+3 x$
a

$$
\begin{aligned}
& x^{2}-2 x-15=0 \\
& (x+3)(x-5)=0
\end{aligned}
$$

Then either $x+3=0 \Rightarrow x=-3$

$$
\text { or } \quad x-5=0 \Rightarrow x=5
$$

So $x=-3$ and $x=5$ are the two solutions of the equation.
b

$$
\begin{aligned}
x^{2} & =9 x \\
x^{2}-9 x & =0 . \\
x(x-9) & =0 .
\end{aligned}
$$

Then either $x=0$
or $\quad x-9=0 \Rightarrow x=9$
The solutions are $x=0$ and $x=9$.
c $\quad 6 x^{2}+13 x-5=0$
$(3 x-1)(2 x+5)=0$
Then either $3 x-1=0 \Rightarrow x=\frac{1}{3}$
or $\quad 2 x+5=0 \Rightarrow x=-\frac{5}{2}$
The solutions are $x=\frac{1}{3}$ and $x=-\frac{5}{2}$
d $\quad x^{2}-5 x+18=2+3 x$

$$
x^{2}-8 x+16=0
$$

$$
(x-4)(x-4)=0
$$

Then either $x-4=0 \Rightarrow x=4$
or $\quad x-4=0 \Rightarrow x=4$

$$
\Rightarrow x=4
$$

Notation The solutions to an equation are sometimes called the roots of the equation.

Factorise the quadratic.

Section 1.3

If the product of the factors is zero, one of the factors must be zero.

Notation The symbol \Rightarrow means 'implies that'. This statement says 'If $x+3=0$, then $x=-3$ '.

A quadratic equation with two distinct factors has two distinct solutions.

Watch out The signs of the solutions are opposite to the signs of the constant terms in each factor.

Be careful not to divide both sides by x, since x may have the value 0 . Instead, rearrange into the form $a x^{2}+b x+c=0$.

Factorise.

Factorise.

Solutions to quadratic equations do not have to be integers.
The quadratic equation $(p x+q)(r x+s)=0$ will have solutions $x=-\frac{q}{p}$ and $x=-\frac{s}{r}$.

Rearrange into the form $a x^{2}+b x+c=0$.

Factorise.
Notation When a quadratic equation has exactly one root it is called a repeated root. You can also say that the equation has two equal roots.

In some cases it may be more straightforward to solve a quadratic equation without factorising.

Example 2

Solve the following equations
a $(2 x-3)^{2}=25$
b $(x-3)^{2}=7$

Notation The symbol \pm lets you write two

 statements in one line of working. You say 'plus or minus'.Take the square root of both sides.
Remember $5^{2}=(-5)^{2}=25$.

Add 3 to both sides.
The solutions are $x=4$ and $x=-1$
b $(x-3)^{2}=7$

Take square roots of both sides.

$$
\begin{aligned}
x-3 & = \pm \sqrt{7} \\
x & =3 \pm \sqrt{7}
\end{aligned}
$$

The solutions are $x=3+\sqrt{7}$ and $x=3-\sqrt{7}$

You can leave your answer in surd form.

Exercise (2A

1 Solve the following equations using factorisation:
a $x^{2}+3 x+2=0$
b $x^{2}+5 x+4=0$
c $x^{2}+7 x+10=0$
d $x^{2}-x-6=0$
e $x^{2}-8 x+15=0$
f $x^{2}-9 x+20=0$
g $x^{2}-5 x-6=0$
h $x^{2}-4 x-12=0$

2 Solve the following equations using factorisation:
a $x^{2}=4 x$
b $x^{2}=25 x$
c $3 x^{2}=6 x$
d $5 x^{2}=30 x$
e $2 x^{2}+7 x+3=0$
f $6 x^{2}-7 x-3=0$
g $6 x^{2}-5 x-6=0$
h $4 x^{2}-16 x+15=0$

3 Solve the following equations:
a $3 x^{2}+5 x=2$
b $(2 x-3)^{2}=9$
c $(x-7)^{2}=36$
d $2 x^{2}=8$
e $3 x^{2}=5$
f $(x-3)^{2}=13$
g $(3 x-1)^{2}=11$
h $5 x^{2}-10 x^{2}=-7+x+x^{2}$
i $6 x^{2}-7=11 x$
j $4 x^{2}+17 x=6 x-2 x^{2}$

Problem-solving

(P) 4 This shape has an area of $44 \mathrm{~m}^{2}$.

Find the value of x.

Divide the shape into two sections:

(P) 5 Solve the equation $5 x+3=\sqrt{3 x+7}$.

Some equations cannot be easily factorised. You can also solve quadratic equations using the quadratic formula.

- The solutions of the equation

 $a x^{2}+b x+c=0$ are given by the formula:$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Watch out You need to rearrange the equation into the form $a x^{2}+b x+c=0$ before reading off the coefficients.

Example 3

Solve $3 x^{2}-7 x-1=0$ by using the formula.

$$
a=3, b=-7 \text { and } c=-1
$$

$$
\begin{array}{ll}
x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(3)(-1)}}{2 \times 3} & \text { Put brackets around any negative values. } \\
x=\frac{7 \pm \sqrt{49+12}}{6} & -4 \times 3 \times(-1)=+12
\end{array}
$$

$$
x=\frac{7 \pm \sqrt{61}}{6}
$$

$$
\text { Then } x=\frac{7+\sqrt{61}}{6} \text { or } x=\frac{7-\sqrt{61}}{6}
$$

$$
\text { Or } x=2.47 \text { (3 s.f.) or } x=-0.135 \text { (3 s.f.) }
$$

Exercise 2B

1 Solve the following equations using the quadratic formula.
Give your answers exactly, leaving them in surd form where necessary.
a $x^{2}+3 x+1=0$
b $x^{2}-3 x-2=0$
c $x^{2}+6 x+6=0$
d $x^{2}-5 x-2=0$
e $3 x^{2}+10 x-2=0$
f $4 x^{2}-4 x-1=0$
g $4 x^{2}-7 x=2$
h $11 x^{2}+2 x-7=0$

2 Solve the following equations using the quadratic formula.
Give your answers to three significant figures.
a $x^{2}+4 x+2=0$
b $x^{2}-8 x+1=0$
c $x^{2}+11 x-9=0$
d $x^{2}-7 x-17=0$
e $5 x^{2}+9 x-1=0$
f $2 x^{2}-3 x-18=0$
g $3 x^{2}+8=16 x$
h $2 x^{2}+11 x=5 x^{2}-18$

3 For each of the equations below, choose a suitable method and find all of the solutions. Where necessary, give your answers to three significant figures.
a $x^{2}+8 x+12=0$
b $x^{2}+9 x-11=0$
c $x^{2}-9 x-1=0$
d $2 x^{2}+5 x+2=0$
e $(2 x+8)^{2}=100$
f $6 x^{2}+6=12 x$
g $2 x^{2}-11=7 x$
h $x=\sqrt{8 x-15}$

Hint You can use any method you are confident with to solve these equations.
(P) 4 This trapezium has an area of $50 \mathrm{~m}^{2}$.

Show that the height of the trapezium is equal to $5(\sqrt{5}-1) \mathrm{m}$.

Challenge

Given that x is positive, solve the equation

$$
\frac{1}{x}+\frac{1}{x+2}=\frac{28}{195}
$$

Problem-solving

Height must be positive. You will have to discard the negative solution of your quadratic equation.

Hint Write the equation in the form $a x^{2}+b x+c=0$ before using the quadratic formula or factorising.

3

Equations and inequalities

Objectives

After completing this chapter you should be able to:

- Solve linear simultaneous equations using elimination or substitution
\rightarrow pages 39-40
- Solve simultaneous equations: one linear and one quadratic
\rightarrow pages 41-42
- Interpret algebraic solutions of equations graphically
\rightarrow pages 42-45
- Solve linear inequalities \rightarrow pages 46-48
- Solve quadratic inequalities
\rightarrow pages 48-51
- Interpret inequalities graphically \rightarrow pages 51-53
- Represent linear and quadratic inequalities graphically \rightarrow pages 53-55

Prior knowledge check
$1 A=\{$ factors of 12$\}$
$B=\{$ factors of 20$\}$
Write down the numbers in each of these sets:
a $A \cap B$

b $(A \cup B)^{\prime}$
\leftarrow GCSE Mathematics

2 Simplify these expressions.
a $\sqrt{75}$
b $\frac{2 \sqrt{45}+3 \sqrt{32}}{6}$
\leftarrow Section 1.5

3.1 Linear simultaneous equations

Linear simultaneous equations in two unknowns have one set of values that will make a pair of equations true at the same time.

The solution to this pair of simultaneous equations is $x=5, y=2$
$x+3 y=11$
(1)
$5+3(2)=5+6=11 \checkmark$
$4 x-5 y=10$
(2)
$4(5)-5(2)=20-10=10 \checkmark$

- Linear simultaneous equations can be solved using elimination or substitution.

Example 1

Solve the simultaneous equations:
a $2 x+3 y=8$
b $4 x-5 y=4$
$3 x-y=23$ $6 x+2 y=25$

$$
\begin{equation*}
12 x-15 y=12 \tag{3}
\end{equation*}
$$

$12 x+4 y=50$
$-19 y=-38$.
$y=2$
Remember to check your solution by substituting into equation (2). $3(7)-(-2)=21+2=23 \checkmark$ Note that you could also multiply equation (1) by 3 and equation (2) by 2 to get $6 x$ in both equations. You could then subtract to eliminate x.

Multiply equation (1) by 3 and multiply equation (2) by 2 to get $12 x$ in each equation.
$4 x-10=4$
$4 x=14$
Subtract, since the $12 x$ terms have the same sign (both positive).

$$
x=3 \frac{1}{2}
$$

The solution is $x=3 \frac{1}{2}, y=2$.

Example

Solve the simultaneous equations:

$$
\begin{aligned}
& 2 x-y=1 \\
& 4 x+2 y=-30
\end{aligned}
$$

Exercise 3A

1 Solve these simultaneous equations by elimination:
a $2 x-y=6$
b $7 x+3 y=16$
$2 x+9 y=29$
c $5 x+2 y=6$
$4 x+3 y=22$
e $\begin{aligned} 3 x-2 y & =-6 \\ 6 x+3 y & =2\end{aligned}$
f $3 x+8 y=33$ $6 x=3+5 y$

2 Solve these simultaneous equations by substitution:
a $x+3 y=11$
b $\begin{gathered}4 x-3 y=40 \\ 2 x+y=5\end{gathered}$
c $3 x-y=7$
$10 x+3 y=-2$
d $2 y=2 x-3$ $3 y=x-1$

3 Solve these simultaneous equations:
a $3 x-2 y+5=0$
b $\frac{x-2 y}{3}=4$
$5(x+y)=6(x+1)$
$2 x+3 y+4=0$
c $3 y=5(x-2)$
$3(x-1)+y+4=0$
Hint First rearrange both equations into the same form e.g. $a x+b y=c$.
$43 x+k y=8$
$x-2 k y=5$
are simultaneous equations where k is a constant.
a Show that $x=3$.

Problem-solving

k is a constant, so it has the same value in both equations.
b Given that $y=\frac{1}{2}$ determine the value of k.
E/P $52 x-p y=5$
$4 x+5 y+q=0$
are simultaneous equations where p and q are constants.
The solution to this pair of simultaneous equations is $x=q, y=-1$.
Find the value of p and the value of q.

3.2 Quadratic simultaneous equations

You need to be able to solve simultaneous equations where one equation is linear and one is quadratic.
To solve simultaneous equations involving one linear equation and one quadratic equation, you need to use a substitution method from the linear equation into the quadratic equation.

- Simultaneous equations with one linear and one quadratic equation can have up to two pairs of solutions. You need to make sure the solutions are paired correctly.
The solutions to this pair of simultaneous equations are $x=4, y=-3$ and $x=5.5, y=-1.5$.
$x-y=7$
(1)
$4-(-3)=7 \checkmark$ and $5.5-(-1.5)=7 \checkmark$
$y^{2}+x y+2 x=5$
(2)
$(-3)^{2}+(4)(-3)+2(4)=9-12+8=5 \checkmark$ and
$(-1.5)^{2}+(5.5)(-1.5)+2(5.5)=2.25-8.25+11=5 \checkmark$

Example 3

Solve the simultaneous equations:
$x+2 y=3$
$x^{2}+3 x y=10$

Exercise 3B

1 Solve the simultaneous equations:
a $x+y=11$
b $2 x+y=1$
$x y=30$
$x^{2}+y^{2}=1$
c $y=3 x$

$$
2 y^{2}-x y=15
$$

d $3 a+b=8$
e $2 u+v=7$
f $3 x+2 y=7$
$3 a^{2}+b^{2}=28$
$u v=6$
$x^{2}+y=8$

2 Solve the simultaneous equations:
a $2 x+2 y=7$
$x^{2}-4 y^{2}=8$
b $x+y=9$
$x^{2}-3 x y+2 y^{2}=0$
c $5 y-4 x=1$
$x^{2}-y^{2}+5 x=41$

3 Solve the simultaneous equations, giving your answers in their simplest surd form:
a $x-y=6$ $x y=4$
b $2 x+3 y=13$
$x^{2}+y^{2}=78$

Watch out Use brackets when you are substituting an expression into an equation.

E/P 4 Solve the simultaneous equations:

$$
\begin{aligned}
& x+y=3 \\
& x^{2}-3 y=1
\end{aligned}
$$

(E/P) 5 a By eliminating y from the equations

$$
\begin{aligned}
& y=2-4 x \\
& 3 x^{2}+x y+11=0
\end{aligned}
$$

$$
\text { show that } x^{2}-2 x-11=0
$$

b Hence, or otherwise, solve the simultaneous equations

$$
\begin{aligned}
& y=2-4 x \\
& 3 x^{2}+x y+11=0
\end{aligned}
$$

giving your answers in the form $a \pm b \sqrt{3}$, where a and b are integers.
(P) 6 One pair of solutions for the simultaneous equations

$$
y=k x-5
$$

$$
4 x^{2}-x y=6
$$

Problem-solving

If $(1, p)$ is a solution, then $x=1, y=p$ satisfies both equations.
is $(1, p)$ where k and p are constants.
a Find the values of k and p.
b Find the second pair of solutions for the simultaneous equations.

Challenge

$$
\begin{array}{r}
y-x=k \\
x^{2}+y^{2}=4
\end{array}
$$

Given that the simultaneous equations have exactly one pair of solutions, show that

$$
k= \pm 2 \sqrt{2}
$$

3.4 Linear inequalities

You can solve linear inequalities using similar methods to those for solving linear equations.

- The solution of an inequality is the set of all real numbers \boldsymbol{x} that make the inequality true.

Example 7

Find the set of values of x for which:
a $5 x+9 \geqslant x+20$
b $12-3 x<27$
c $3(x-5)>5-2(x-8)$

Notation You can write the solution to this inequality using set notation as $\{x: x \geqslant 2.75\}$. This means the set of all values x for which x is greater than or equal to 2.75 .

Rearrange to get $x \geqslant \ldots$

Subtract 12 from both sides.
Divide both sides by -3 . (You therefore need to turn round the inequality sign.)
In set notation $\{x: x>-5\}$.

Multiply out (note: $-2 \times-8=+16$).
Rearrange to get $x>\ldots$
In set notation $\{x: x>7.2\}$.

You may sometimes need to find the set of values for which two inequalities are true together. Number lines can be useful to find your solution.

For example, in the number line below the solution set is $x>-2$ and $x \leqslant 4$.

Here the solution sets are $x \leqslant-1$ or $x>3$.

Notation In set notation

$x>-2$ and $x \leqslant 4$ is written $\{x:-2<x \leqslant 4\}$ or alternatively $\{x: x>-2\} \cap\{x: x \leqslant 4\}$ $x \leqslant-1$ or $x>3$ is written $\{x: x \leqslant-1\} \cup\{x: x>3\}$

O is used for < and > and means the end value is not included.

- is used for \leqslant and \geqslant and means the end value is included.
These are the only real values that satisfy both equalities simultaneously so the solution is $-2<x \leqslant 4$.

Here there is no overlap and the two inequalities have to be written separately as $x \leqslant-1$ or $x>3$.

Find the set of values of x for which:
a $3 x-5<x+8$ and $5 x>x-8$
b $x-5>1-x$ or $15-3 x>5+2 x$.
c $4 x+7>3$ and $17<11+2 x$.

$$
\begin{aligned}
& \text { a } 3 x-5<x+8 \quad 5 x>x-8 \\
& 2 x-5<8 \quad 4 x>-8 \\
& 2 x<13 \quad x>-2 \\
& x<6.5
\end{aligned}
$$

So the required set of values is $-2<x<6.5$. \qquad

Draw a number line to illustrate the two inequalities.
The two sets of values overlap (intersect) where $-2<x<6.5$.

Notice here how this is written when x lies between two values.
In set notation this can be written as $\{x:-2<x<6.5\}$.

$$
\text { b } \begin{array}{rlrl}
x-5 & >1-x & 15-3 x & >5+2 x \\
2 x-5 & >1 & 10-3 x & >2 x \\
2 x & >6 & 10 & >5 x \\
x & >3 & 2 & >x \\
& x & <2
\end{array}
$$

Draw a number line. Note that there is no overlap between the two sets of values.

In set notation this can be written as $\{x: x<2\} \cup\{x: x>3\}$.

Exercise 3D

1 Find the set of values of x for which:
a $2 x-3<5$
b $5 x+4 \geqslant 39$
c $6 x-3>2 x+7$
d $5 x+6 \leqslant-12-x$
e $15-x>4$
f $21-2 x>8+3 x$
g $1+x<25+3 x$
h $7 x-7<7-7 x$
i $5-0.5 x \geqslant 1$
j $5 x+4>12-2 x$

2 Find the set of values of x for which:
a $2(x-3) \geqslant 0$
b $8(1-x)>x-1$
c $3(x+7) \leqslant 8-x$
d $2(x-3)-(x+12)<0$
e $1+11(2-x)<10(x-4)$
f $2(x-5) \geqslant 3(4-x)$
g $12 x-3(x-3)<45$
h $x-2(5+2 x)<11$
i $x(x-4) \geqslant x^{2}+2$
j $x(5-x) \geqslant 3+x-x^{2}$
k $3 x+2 x(x-3) \leqslant 2\left(5+x^{2}\right)$
l $x(2 x-5) \leqslant \frac{4 x(x+3)}{2}-9$

3 Use set notation to describe the set of values of x for which:
a $3(x-2)>x-4$ and $4 x+12>2 x+17$
b $2 x-5<x-1$ and $7(x+1)>23-x$
c $2 x-3>2$ and $3(x+2)<12+x$
d $15-x<2(11-x)$ and $5(3 x-1)>12 x+19$
e $3 x+8 \leqslant 20$ and $2(3 x-7) \geqslant x+6$
f $5 x+3<9$ or $5(2 x+1)>27$
g $4(3 x+7) \leqslant 20$ or $2(3 x-5) \geqslant \frac{7-6 x}{2}$

Challenge

$A=\{x: 3 x+5>2\}$

$$
B=\left\{x: \frac{x}{2}+1 \leqslant 3\right\} \quad C=\{x: 11<2 x-1\}
$$

Given that $A \cap(B \cup C)=\{x: p<x \leqslant q\} \cup\{x: x>r\}$, find the values of p, q and r.

Straight line graphs

Objectives

After completing this unit you should be able to:

- Calculate the gradient of a line joining a pair of points \rightarrow pages 90-91
- Understand the link between the equation of a line, and its gradient and intercept
\rightarrow pages 91-93
- Find the equation of a line given (i) the gradient and one point on the line or (ii) two points on the line
- Find the point of intersection for a pair of straight lines

$$
\rightarrow \text { pages 95-96 }
$$

- Know and use the rules for parallel and perpendicular gradients
\rightarrow pages 97 - $\mathbf{1 0 0}$
- Solve length and area problems on coordinate grids \rightarrow pages 100-103
- Use straight line graphs to construct mathematical models

$5.1 y=m x+c$

You can find the gradient of a straight line joining two points by considering the vertical distance and the horizontal distance between the points.

- The gradient \boldsymbol{m} of a line joining the point with coordinates $\left(x_{1}, y_{1}\right)$ to the point with coordinates $\left(x_{2}, y_{2}\right)$ can be calculated using the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Example
 1

Online Explore the gradient formula using GeoGebra.

Work out the gradient of the line joining $(-2,7)$ and $(4,5)$

$m=\frac{5-7}{4-(-2)}=-\frac{2}{6}=-\frac{1}{3}$

$$
\begin{aligned}
& \text { Use } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} . \text { Here }\left(x_{1}, y_{1}\right)=(-2,7) \text { and } \\
& \left(x_{2}, y_{2}\right)=(4,5)
\end{aligned}
$$

Example 2

The line joining $(2,-5)$ to $(4, a)$ has gradient -1 . Work out the value of a.

$$
\begin{array}{rlrl}
\frac{a-(-5)}{4-2} & =-1 & & \begin{array}{l}
\text { Use } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} . \text { Here } m=-1,\left(x_{1}, y_{1}\right)=(2,-5) \\
\text { So } \quad \begin{aligned}
\frac{a+5}{2} & =-1
\end{aligned} \\
\\
a+5
\end{array} \\
\text { and }\left(x_{2}, y_{2}\right)=(4, a) .
\end{array}
$$

Exercise 5A

1 Work out the gradients of the lines joining these pairs of points:
a $(4,2),(6,3)$
b $(-1,3),(5,4)$
c $(-4,5),(1,2)$
d $(2,-3),(6,5)$
e $(-3,4),(7,-6)$
f $(-12,3),(-2,8)$
g $(-2,-4),(10,2)$
h $\left(\frac{1}{2}, 2\right),\left(\frac{3}{4}, 4\right)$
j $(-2.4,9.6),(0,0)$
k (1.3, -2.2), (8.8, -4.7)
i $\left(\frac{1}{4}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{2}{3}\right)$
m $(3 b,-2 b),(7 b, 2 b)$
n $\left(p, p^{2}\right),\left(q, q^{2}\right)$

2 The line joining $(3,-5)$ to $(6, a)$ has a gradient 4 . Work out the value of a.
3 The line joining $(5, b)$ to $(8,3)$ has gradient -3 . Work out the value of b.
4 The line joining $(c, 4)$ to $(7,6)$ has gradient $\frac{3}{4}$. Work out the value of c.
5 The line joining $(-1,2 d)$ to $(1,4)$ has gradient $-\frac{1}{4}$. Work out the value of d.
6 The line joining $(-3,-2)$ to $(2 e, 5)$ has gradient 2 . Work out the value of e.
7 The line joining $(7,2)$ to $(f, 3 f)$ has gradient 4 . Work out the value of f.
8 The line joining $(3,-4)$ to $(-g, 2 g)$ has gradient -3 . Work out the value of g.
(P) 9 Show that the points $A(2,3), B(4,4)$ and $C(10,7)$ can be joined by a straight line.

E/P
10 Show that the points $A(-2 a, 5 a), B(0,4 a)$ and points $C(6 a, a)$ are collinear. (3 marks)

Problem-solving

Find the gradient of the line joining the points A and B and the line joining the points B and C.

Notation Points are collinear if they all lie on the same straight line.

- The equation of a straight line can be written in the form

 $y=m x+c$, where m is the gradient and c is the y-intercept.- The equation of a straight line can also be written in the form $a x+b y+c=0$, where a, b and c are integers.

Example 3

Write down the gradient and y-intercept of these lines:
a $y=-3 x+2$
b $4 x-3 y+5=0$

```
a Gradient \(=-3\) and \(y\)-intercept \(=(0,2)\).
b \(y=\frac{4}{3} x+\frac{5}{3}\)
    Gradient \(=\frac{4}{3}\) and \(y\)-intercept \(=\left(0, \frac{5}{3}\right)\).
```

```
Compare }y=-3x+2\mathrm{ with }y=mx+c
From this, m=-3 and c=2.
Rearrange the equation into the form \(y=m x+c\).
From this \(m=\frac{4}{3}\) and \(c=\frac{5}{3}\)
```

Watch out Use fractions rather than decimals in coordinate geometry questions.

Example 4

Write these lines in the form $a x+b y+c=0$
a $y=4 x+3$
b $y=-\frac{1}{2} x+5$
\square
a $4 x-y+3=0$
Rearrange the equation into the form
b $\frac{1}{2} x+y-5=0$
$x+2 y-10=0$ $a x+b y+c=0$

Collect all the terms on one side of the equation.

Example 5

The line $y=4 x-8$ meets the x-axis at the point P. Work out the coordinates of P.

The line meets the x-axis when $y=0$, so substitute $y=0$ into $y=4 x-8$.

Rearrange the equation for x.

Always write down the coordinates of the point.

Exercise 5B

1 Work out the gradients of these lines:
a $y=-2 x+5$
b $y=-x+7$
c $y=4+3 x$
d $y=\frac{1}{3} x-2$
e $y=-\frac{2}{3} x$
f $y=\frac{5}{4} x+\frac{2}{3}$
g $2 x-4 y+5=0$
h $10 x-5 y+1=0$
i $-x+2 y-4=0$
j $-3 x+6 y+7=0$
k $4 x+2 y-9=0$
l $9 x+6 y+2=0$

2 These lines cut the y-axis at $(0, c)$. Work out the value of c in each case.
a $y=-x+4$
b $y=2 x-5$
c $y=\frac{1}{2} x-\frac{2}{3}$
d $y=-3 x$
e $y=\frac{6}{7} x+\frac{7}{5}$
f $y=2-7 x$
g $3 x-4 y+8=0$
h $4 x-5 y-10=0$
i $-2 x+y-9=0$
j $7 x+4 y+12=0$
k $7 x-2 y+3=0$
l $-5 x+4 y+2=0$

3 Write these lines in the form $a x+b y+c=0$.
a $y=4 x+3$
b $y=3 x-2$
c $y=-6 x+7$
d $y=\frac{4}{5} x-6$
e $y=\frac{5}{3} x+2$
f $y=\frac{7}{3} x$
g $y=2 x-\frac{4}{7}$
h $y=-3 x+\frac{2}{9}$
i $y=-6 x-\frac{2}{3}$
j $y=-\frac{1}{3} x+\frac{1}{2}$
k $y=\frac{2}{3} x+\frac{5}{6}$
l $y=\frac{3}{5} x+\frac{1}{2}$

4 The line $y=6 x-18$ meets the x-axis at the point P. Work out the coordinates of P.

5 The line $3 x+2 y=0$ meets the x-axis at the point R. Work out the coordinates of R.
6 The line $5 x-4 y+20=0$ meets the y-axis at the point A and the x-axis at the point B. Work out the coordinates of A and B.

7 A line l passes through the points with coordinates $(0,5)$ and $(6,7)$.
a Find the gradient of the line.
b Find an equation of the line in the form $a x+b y+c=0$.
(E) 8 A line l cuts the x-axis at $(5,0)$ and the y-axis at $(0,2)$.
a Find the gradient of the line.
b Find an equation of the line in the form $a x+b y+c=0$.
(P) 9 Show that the line with equation $a x+b y+c=0$ has gradient $-\frac{a}{b}$ and cuts the y-axis at $-\frac{c}{b}$
E/P 10 The line l with gradient 3 and y-intercept $(0,5)$ has the equation $a x-2 y+c=0$. Find the values of a and c.

Problem-solving

Try solving a similar problem with numbers first:

Find the gradient and y-intercept of the straight line with equation $3 x+7 y+2=0$.

E/P 11 The straight line l passes through $(0,6)$ and has gradient -2 . It intersects the line with equation $5 x-8 y-15=0$ at point P. Find the coordinates of P.

12 The straight line l_{1} with equation $y=3 x-7$ intersects the straight line l_{2} with equation $a x+4 y-17=0$ at the point $P(-3, b)$.
a Find the value of b.
b Find the value of a.

Challenge

Show that the equation of a straight line through $(0, a)$ and $(b, 0)$ is $a x+b y-a b=0$.

5.2 Equations of straight lines

You can define a straight line by giving:

- one point on the line and the gradient
- two different points on the line

You can find an equation of the line from either of these conditions.

- The equation of a line with gradient \boldsymbol{m} that passes through the point with coordinates (x_{1}, y_{1}) can be written as $y-y_{1}=m\left(x-x_{1}\right)$.

Example 6

Find the equation of the line with gradient 5 that passes through the point $(3,2)$.

$$
\begin{aligned}
& y-2=5(x-3) \\
& y-2=5 x-15 \\
& y=5 x-13
\end{aligned}
$$

Online Explore lines of a given gradient passing through a given point using GeoGebra.

This is in the form $y-y_{1}=m\left(x-x_{1}\right)$. Here $m=5$ and $\left(x_{1}, y_{1}\right)=(3,2)$.

Example 7

Find the equation of the line that passes through the points $(5,7)$ and $(3,-1)$.

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-(-1)}{5-3}=\frac{8}{2}=4 \\
& \text { So } \quad \begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y+1 & =4(x-3) \\
y+1 & =4 x-12 \\
y & =4 x-13
\end{aligned}
\end{aligned}
$$

First find the slope of the line.
Here $\left(x_{1}, y_{1}\right)=(3,-1)$ and $\left(x_{2}, y_{2}\right)=(5,7)$.
(x_{1}, y_{1}) and (x_{2}, y_{2}) have been chosen to make the denominator positive.

You know the gradient and a point on the line, so use $y-y_{1}=m\left(x-x_{1}\right)$.

Use $m=4, x_{1}=3$ and $y_{1}=-1$.

Exercise 5 C

1 Find the equation of the line with gradient m that passes through the point $\left(x_{1}, y_{1}\right)$ when:
a $m=2$ and $\left(x_{1}, y_{1}\right)=(2,5)$
b $m=3$ and $\left(x_{1}, y_{1}\right)=(-2,1)$
c $m=-1$ and $\left(x_{1}, y_{1}\right)=(3,-6)$
d $m=-4$ and $\left(x_{1}, y_{1}\right)=(-2,-3)$
e $m=\frac{1}{2}$ and $\left(x_{1}, y_{1}\right)=(-4,10)$
f $m=-\frac{2}{3}$ and $\left(x_{1}, y_{1}\right)=(-6,-1)$
g $m=2$ and $\left(x_{1}, y_{1}\right)=(a, 2 a)$
h $m=-\frac{1}{2}$ and $\left(x_{1}, y_{1}\right)=(-2 b, 3 b)$

2 Find the equations of the lines that pass through these pairs of points:
a $(2,4)$ and $(3,8)$
b $(0,2)$ and $(3,5)$
c $(-2,0)$ and $(2,8)$
d $(5,-3)$ and $(7,5)$
e $(3,-1)$ and $(7,3)$
f $(-4,-1)$ and $(6,4)$
g $(-1,-5)$ and $(-3,3)$
h $(-4,-1)$ and $(-3,-9)$
i $\left(\frac{1}{3}, \frac{2}{5}\right)$ and $\left(\frac{2}{3}, \frac{4}{5}\right)$
j $\left(-\frac{3}{4}, \frac{1}{7}\right)$ and $\left(\frac{1}{4}, \frac{3}{7}\right)$

Hint In each case
find the gradient m then use
$y-y_{1}=m\left(x-x_{1}\right)$.
(E) 3 Find the equation of the line l which passes through the points $A(7,2)$ and $B(9,-8)$.

Give your answer in the form $a x+b y+c=0$.
4 The vertices of the triangle $A B C$ have coordinates $A(3,5), B(-2,0)$ and $C(4,-1)$.
Find the equations of the sides of the triangle.

5 The straight line l passes through $(a, 4)$ and $(3 a, 3)$. An equation of l is $x+6 y+c=0$. Find the value of a and the value of c.

E/P) 6 The straight line l passes through $(7 a, 5)$ and $(3 a, 3)$.
An equation of l is $x+b y-12=0$.
Find the value of a and the value of b.

Problem-solving

It is often easier to find unknown values in the order they are given in the question. Find the value of a first then find the value of c.

Challenge

Consider the line passing through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
a Write down the formula for the gradient, m, of the line.
b Show that the general equation of the line can be written in the form $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$
c Use the equation from part \mathbf{b} to find the equation of the line passing through the points $(-8,4)$ and $(-1,7)$.

Example 8

The line $y=3 x-9$ meets the x-axis at the point A. Find the equation of the line with gradient $\frac{2}{3}$ that passes through point A. Write your answer in the form $a x+b y+c=0$, where a, b and c are integers.

```
0=3x-9 so }x=3.A\mathrm{ is the point (3,0).
    y-O=\frac{2}{3}(x-3)
        3y=2x-6
-2x+3y+6=0
```


Online Plot the solution on a graph using

 GeoGebra.The line meets the x-axis when $y=0$, so substitute $y=0$ into $y=3 x-9$.

Use $y-y_{1}=m\left(x-x_{1}\right)$. Here $m=\frac{2}{3}$ and $\left(x_{1}, y_{1}\right)=(3,0)$.
Rearrange the equation into the form $a x+b y+c=0$.

Example 9

The lines $y=4 x-7$ and $2 x+3 y-21=0$ intersect at the point A. The point B has coordinates $(-2,8)$. Find the equation of the line that passes through the points A and B. Write your answer in the form $a x+b y+c=0$, where a, b and c are integers.

```
2x+3(4x-7)-21=0
2x+12x-21-21=0
    14x=42
        x=3
y=4(3)-7=5 so A is the point (3,5).
m=\frac{\mp@subsup{y}{2}{}-\mp@subsup{y}{1}{}}{\mp@subsup{x}{2}{}-\mp@subsup{x}{1}{}}=\frac{8-5}{-2-3}=\frac{3}{-5}=-\frac{3}{5}
    y-5=-\frac{3}{5}(x-3)
    5y-25=-3x+9
3x+5y-34=0
```


Online Check solutions to simultaneous

 equations using your calculator.Solve the equations simultaneously to find point A.
Substitute $y=4 x-7$ into $2 x+3 y-21=0$.

Find the slope of the line connecting A and B.

Use $y-y_{1}=m\left(x-x_{1}\right)$ with $m=-\frac{3}{5}$ and $\left(x_{1}, y_{1}\right)=(3,5)$.

1 The line $y=4 x-8$ meets the x-axis at the point A. Find the equation of the line with gradient 3 that passes through the point A.
2 The line $y=-2 x+8$ meets the y-axis at the point B. Find the equation of the line with gradient 2 that passes through the point B.
3 The line $y=\frac{1}{2} x+6$ meets the x-axis at the point C. Find the equation of the line with gradient $\frac{2}{3}$ that passes through the point C. Write your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(P) 4 The line $y=\frac{1}{4} x+2$ meets the y-axis at the point B. The point C has coordinates $(-5,3)$.

Find the gradient of the line joining the points B and C.
(P) 5 The line that passes through the points $(2,-5)$ and $(-7,4)$ meets the x-axis at the point P. Work out the coordinates of the point P.

Problem-solving

A sketch can help you check whether your answer looks right.
(P) 6 The line that passes through the points $(-3,-5)$ and $(4,9)$ meets the y-axis at the point G. Work out the coordinates of the point G.
(P) 7 The line that passes through the points $\left(3,2 \frac{1}{2}\right)$ and $\left(-1 \frac{1}{2}, 4\right)$ meets the y-axis at the point J. Work out the coordinates of the point J.
(P) 8 The lines $y=x$ and $y=2 x-5$ intersect at the point A. Find the equation of the line with gradient $\frac{2}{5}$ that passes through the point A.
(P) 9 The lines $y=4 x-10$ and $y=x-1$ intersect at the point T. Find the equation of the line with gradient $-\frac{2}{3}$ that passes through the point T. Write your answer in the form $a x+b y+c=0$, where a, b and c are integers.

10 The line p has gradient $\frac{2}{3}$ and passes through the point $(6,-12)$. The line q has gradient -1 and passes through the point $(5,5)$. The line p meets the y-axis at A and the line q meets the x-axis at B. Work out the gradient of the line joining the points A and B.
11 The line $y=-2 x+6$ meets the x-axis at the point P. The line $y=\frac{3}{2} x-4$ meets the y-axis at the point Q. Find the equation of the line joining the points P and Q.
(P) 12 The line $y=3 x-5$ meets the x-axis at the point M. The line $y=-\frac{2}{3} x+\frac{2}{3}$ meets the y-axis at the point N. Find the equation of the line joining the points M and N. Write your answer in the form $a x+b y+c=0$, where a, b and c are integers.
13 The line $y=2 x-10$ meets the x-axis at the point A. The line $y=-2 x+4$ meets the y-axis at the point B. Find the equation of the line joining the points A and B.
14 The line $y=4 x+5$ meets the y-axis at the point C. The line $y=-3 x-15$ meets the x-axis at the point D. Find the equation of the line joining the points C and D. Write your answer in the form $a x+b y+c=0$, where a, b and c are integers.

15 The lines $y=x-5$ and $y=3 x-13$ intersect at the point S. The point T has coordinates $(-4,2)$. Find the equation of the line that passes through the points S and T.
16 The lines $y=-2 x+1$ and $y=x+7$ intersect at the point L. The point M has coordinates $(-3,1)$. Find the equation of the line that passes through the points L and M.

5.3 Parallel and perpendicular lines

- Parallel lines have the same gradient.

Example 10

A line is parallel to the line $6 x+3 y-2=0$ and it passes through the point $(0,3)$. Work out the equation of the line.

$$
\begin{aligned}
6 x+3 y-2 & =0 \\
3 y-2 & =-6 x \\
3 y & =-6 x+2 \\
y & =-2 x+\frac{2}{3}
\end{aligned}
$$

The gradient of this line is $\mathbf{- 2}$.
The equation of the line is $y=-2 x+3$.

Rearrange the equation into the form $y=m x+c$ to find m.

Compare $y=-2 x+\frac{2}{3}$ with $y=m x+c$, so $m=-2$. Parallel lines have the same gradient, so the gradient of the required line $=-2$.
$(0,3)$ is the intercept on the y-axis, so $c=3$.

Exercise 5E

1 Work out whether each pair of lines is parallel.
a $y=5 x-2$
$15 x-3 y+9=0$
b $7 x+14 y-1=0$
$y=\frac{1}{2} x+9$
c $4 x-3 y-8=0$
$3 x-4 y-8=0$
(P) 2 The line r passes through the points $(1,4)$ and $(6,8)$ and the line s passes through the points $(5,-3)$ and $(20,9)$. Show that the lines r and s are parallel.

P 3 The coordinates of a quadrilateral $A B C D$ are $A(-6,2), B(4,8)$, Hint A trapezium has exactly $C(6,1)$ and $D(-9,-8)$. Show that the quadrilateral is a trapezium.
one pair of parallel sides.

4 A line is parallel to the line $y=5 x+8$ and its y-intercept is $(0,3)$. Write down the equation of the line.

Hint The line will have gradient 5.

5 A line is parallel to the line $y=-\frac{2}{5} x+1$ and its y-intercept is $(0,-4)$. Work out the equation of the line. Write your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(P) 6 A line is parallel to the line $3 x+6 y+11=0$ and its intercept on the y-axis is $(0,7)$. Write down the equation of the line.
(P) 7 A line is parallel to the line $2 x-3 y-1=0$ and it passes through the point $(0,0)$. Write down the equation of the line.
8 Find an equation of the line that passes through the point $(-2,7)$ and is parallel to the line $y=4 x+1$. Write your answer in the form $a x+b y+c=0$.

Perpendicular lines are at right angles to each other. If you know the gradient of one line, you can find the gradient of the other.

- If a line has a gradient of m, a line perpendicular to it has a gradient of $-\frac{1}{m}$

- If two lines are perpendicular, the product of their gradients is $\mathbf{- 1}$.

The shaded triangles are congruent.
Line l_{1} has gradient
$\frac{a}{b}=m$
Line l_{2} has gradient
$\frac{-b}{a}=-\frac{1}{m}$

Example 11

Work out whether these pairs of lines are parallel, perpendicular or neither:
a $3 x-y-2=0$
b $y=\frac{1}{2} x$
$x+3 y-6=0$
$2 x-y+4=0$

a $3 x-y-2=0$.	Rearrange the equations into the form $y=m x+c$.
$3 x-2=y$	
So $y=3 x-2$	
The gradient of this line is 3 .	
$x+3 y-6=0$	
$3 y-6=-x$	
$\begin{aligned} 3 y & =-x+6 \\ y & =-\frac{1}{3} x+2 \end{aligned}$	
The gradient of this line is $-\frac{1}{3}$	Compare $y=-\frac{1}{3} x+2$ with $y=m x+c$, so $m=-\frac{1}{3}$
So the lines are perpendicular as $3 \times\left(-\frac{1}{3}\right)=-1$.	
b $y=\frac{1}{2} x$.	Compare $y=\frac{1}{2} x$ with $y=m x+c$, so $m=\frac{1}{2}$.
The gradient of this line is $\frac{1}{2}$	
$2 x-y+4=0$.	Rearrange the equation into the form $y=m x+c$ to find m.
$2 x+4=y$	
So $\quad y=2 x+4$	
The gradient of this line is 2 .	Compare $y=2 x+4$ with $y=m x+c$, so $m=2$.
The lines are not parallel as they have different gradients.	
The lines are not perpendicular as $\frac{1}{2} \times 2 \neq-1$.	Online Explore this solution using GeoGebra.

A line is perpendicular to the line $2 y-x-8=0$ and passes through the point $(5,-7)$.
Find the equation of the line.

$$
\begin{aligned}
& y=\frac{1}{2} x+4 \\
& \text { Gradient of } y=\frac{1}{2} x+4 \text { is } \frac{1}{2} \\
& \text { So the gradient of the perpendicular line is }-2 \text {. } \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+7=-2(x-5) \\
& y+7=-2 x+10 \\
& y=-2 x+3
\end{aligned}
$$

Problem-solving

You need to fill in the steps of this problem yourself:

- Rearrange the equation into the form $y=m x+c$ to find the gradient.
- Use $-\frac{1}{m}$ to find the gradient of a perpendicular line.
- Use $y-y_{1}=m\left(x-x_{1}\right)$ to find the equation of the line.

Exercise 5 F

1 Work out whether these pairs of lines are parallel, perpendicular or neither:
a $y=4 x+2$
b $y=\frac{2}{3} x-1$ $y=\frac{2}{3} x-11$
c $y=\frac{1}{5} x+9$
$y=-\frac{1}{4} x-7$
$y=5 x+9$
d $y=-3 x+2$
e $y=\frac{3}{5} x+4$
f $y=\frac{5}{7} x$
$y=\frac{1}{3} x-7$
$y=-\frac{5}{3} x-1$
$y=\frac{5}{7} x-3$
g $y=5 x-3$
h $5 x-y-1=0$
$y=-\frac{1}{5} x$
i $y=-\frac{3}{2} x+8$
$5 x-y+4=0$
k $\begin{aligned} 3 x+2 y-12 & =0 \\ 2 x+3 y-6 & =0\end{aligned}$
$2 x-3 y-9=0$
j $4 x-5 y+1=0$
l $\begin{aligned} & 5 x-y+2=0 \\ & 2 x+10 y-4=0\end{aligned}$
$8 x-10 y-2=0$

2 A line is perpendicular to the line $y=6 x-9$ and passes through the point $(0,1)$. Find an equation of the line.
(P) 3 A line is perpendicular to the line $3 x+8 y-11=0$ and passes through the point $(0,-8)$.

Find an equation of the line.
4 Find an equation of the line that passes through the point $(6,-2)$ and is perpendicular to the line $y=3 x+5$.

5 Find an equation of the line that passes through the point $(-2,5)$ and is perpendicular to the line $y=3 x+6$.
(P) 6 Find an equation of the line that passes through the point $(3,4)$ and is perpendicular to the line $4 x-6 y+7=0$.

7 Find an equation of the line that passes through the point $(5,-5)$ and is perpendicular to the line $y=\frac{2}{3} x+5$. Write your answer in the form $a x+b y+c=0$, where a, b and c are integers.

8 Find an equation of the line that passes through the point $(-2,-3)$ and is perpendicular to the line $y=-\frac{4}{7} x+5$. Write your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(P) 9 The line l passes through the points $(-3,0)$ and $(3,-2)$ and the line n passes through the points $(1,8)$ and $(-1,2)$. Show that the lines l and n are perpendicular.

Problem-solving

Don't do more work than you need to. You only need to find the gradients of both lines, not their equations.

10 The vertices of a quadrilateral $A B C D$ have coordinates $A(-1,5), B(7,1), C(5,-3)$ and $D(-3,1)$.
Show that the quadrilateral is a rectangle.

Hint The sides of a rectangle are perpendicular.

E/P 11 A line l_{1} has equation $5 x+11 y-7=0$ and crosses the x-axis at A. The line l_{2} is perpendicular to l_{1} and passes through A.
a Find the coordinates of the point A.
b Find the equation of the line l_{2}. Write your answer in the form $a x+b y+c=0$.
12 The points A and C lie on the y-axis and the point B lies on the x-axis as shown in the diagram.

Problem-solving

Sketch graphs in coordinate geometry problems are not accurate, but you can use the graph to make sure that your answer makes sense. In this question c must be negative.

The line through points A and B is perpendicular to the line through points B and C.
Find the value of c.

5.4 Length and area

You can find the distance between two points A and B by considering a right-angled triangle with hypotenuse $A B$.

- You can find the distance d between $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}) by using the formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Example 13

Find the distance between $(2,3)$ and $(5,7)$.

Example 14

The straight line l_{1} with equation $4 x-y=0$ and

Online Draw both lines and the triangle $A O B$ on a graph using technology.
the straight line l_{2} with equation $2 x+3 y-21=0$ intersect at point A.
a Work out the coordinates of A.
b Work out the area of triangle $A O B$ where B is the point where l_{2} meets the x-axis.
a Equation of l_{1} is $y=4 x$

$$
2 x+3 y-21=0
$$

$$
2 x+3(4 x)-21=0
$$

$$
14 x-21=0
$$

$$
14 x=21
$$

$$
x=\frac{3}{2}
$$

$$
y=4 \times\left(\frac{3}{2}\right)=6
$$

So point A has coordinates $\left(\frac{3}{2}, 6\right)$.
b The triangle $A O B$ has a height of 6 units

$$
2 x+3 y-21=0
$$

$$
2 x+3(0)-21=0
$$

$$
2 x-21=0
$$

$$
x=\frac{21}{2}
$$

The triangle $A O B$ has a base length of $\frac{21}{2}$ units.
Area $=\frac{1}{2} \times 6 \times \frac{21}{2}=\frac{63}{2}$

Rewrite the equation of l_{1} in the form $y=m x+c$.

Substitute $y=4 x$ into the equation for l_{2} to find the point of intersection.

Solve the equation to find the x-coordinate of point A.

Substitute to find the y-coordinate of point A.

The height is the y-coordinate of point A.
B is the point where the line l_{2} intersects the x-axis.
At B, the y-coordinate is zero.

Solve the equation to find the x-coordinate of point B.

Area $=\frac{1}{2} \times$ base \times height
You don't need to give units for length and area problems on coordinate grids.

1 Find the distance between these pairs of points:
a $(0,1),(6,9)$
b $(4,-6),(9,6)$
c $(3,1),(-1,4)$
d $(3,5),(4,7)$
e $(0,-4),(5,5)$
f $(-2,-7),(5,1)$

2 Consider the points $A(-3,5), B(-2,-2)$ and $C(3,-7)$. Determine whether the line joining the points A and B is congruent to the line joining the points B and C.

Hint Two line segments are congruent if they are the same length.

3 Consider the points $P(11,-8), Q(4,-3)$ and $R(7,5)$. Show that the line segment joining the points P and Q is not congruent to the line joining the points Q and R.

4 The distance between the points $(-1,13)$ and $(x, 9)$ is $\sqrt{65}$

Problem-solving

Find two possible values of x.

Use the distance formula to formulate a quadratic equation in x.
(P) 5 The distance between the points $(2, y)$ and $(5,7)$ is $3 \sqrt{10}$. Find two possible values of y.
(P) 6 a Show that the straight line l_{1} with equation $y=2 x+4$ is parallel to the straight line l_{2} with equation $6 x-3 y-9=0$.
b Find the equation of the straight line l_{3} that is perpendicular to l_{1} and passes through the point $(3,10)$.
c Find the point of intersection of the lines l_{2} and l_{3}.

Problem-solving The

shortest distance between two parallel lines is the perpendicular distance between them.
d Find the shortest distance between lines l_{1} and l_{2}.
E/P 7 A point P lies on the line with equation $y=4-3 x$. The point P is a distance $\sqrt{34}$ from the origin. Find the two possible positions of point P.

8 The vertices of a triangle are $A(2,7), B(5,-6)$ and $C(8,-6)$.
a Show that the triangle is a scalene triangle.
Notation Scalene triangles have three sides of different lengths.
b Find the area of the triangle $A B C$.

Problem-solving

Draw a sketch and label the points A, B and C. Find the length of the base and the height of the triangle.

9 The straight line l_{1} has equation $y=7 x-3$. The straight line l_{2} has equation $4 x+3 y-41=0$. The lines intersect at the point A.
a Work out the coordinates of A.
The straight line l_{2} crosses the x-axis at the point B.
b Work out the coordinates of B.
c Work out the area of triangle $A O B$.

10 The straight line l_{1} has equation $4 x-5 y-10=0$ and intersects the x-axis at point A. The straight line l_{2} has equation $4 x-2 y+20=0$ and intersects the x-axis at the point B.
a Work out the coordinates of A.
b Work out the coordinates of B.
The straight lines l_{1} and l_{2} intersect at the point C.
c Work out the coordinates of C.
d Work out the area of triangle $A B C$.
(E) 11 The points $R(5,-2)$ and $S(9,0)$ lie on the straight line l_{1} as shown.
a Work out an equation for straight line l_{1}.
The straight line l_{2} is perpendicular to l_{1} and passes through the point R.
b Work out an equation for straight line l_{2}.
c Write down the coordinates of T.
d Work out the lengths of $R S$ and $T R$ leaving your answer in the form $k \sqrt{5}$.
e Work out the area of $\triangle R S T$.

(E/P) 12 The straight line l_{1} passes through the point $(-4,14)$ and has gradient $-\frac{1}{4}$
a Find an equation for l_{1} in the form $a x+b y+c=0$, where a, b and c are integers.
b Write down the coordinates of A, the point where straight line l_{1} crosses the y-axis. ($\mathbf{1}$ mark)
The straight line l_{2} passes through the origin and has gradient 3. The lines l_{1} and l_{2} intersect at the point B.
c Calculate the coordinates of B.
d Calculate the exact area of $\triangle O A B$.

Trigonometric ratios

Objectives

After completing this unit you should be able to:

- Use the cosine rule to find a missing side or angle
\rightarrow pages 174-179
- Use the sine rule to find a missing side or angle
\rightarrow pages 179-185
- Find the area of a triangle using an appropriate formula
- Solve problems involving triangles
\rightarrow pages 185-187
\rightarrow pages 187-192
- Sketch the graphs of the sine, cosine and tangent functions
\rightarrow pages 192-194
- Sketch simple transformations of these graphs $\quad \rightarrow$ pages 194-198

9.1 The cosine rule

The cosine rule can be used to work out missing sides or angles in triangles.

- This version of the cosine rule is used to find a missing side if you know two sides and the angle between them:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

Watch out You can exchange the letters depending on which side you want to find, as long as each side has the same letter as the opposite angle.

You can use the standard trigonometric ratios for right-angled triangles to prove the cosine rule:

Hint For a right-angled triangle

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

Example 1

Calculate the length of the side $A B$ of the triangle $A B C$ in which $A C=6.5 \mathrm{~cm}, B C=8.7 \mathrm{~cm}$ and $\angle A C B=100^{\circ}$.

Label the sides of the triangle with small letters a, b and c opposite the angles marked.

Write out the formula you are using as the first line of working, then substitute in the values given.

Don't round any values until the end of your working. You can write your final answer to 3 significant figures.

Find the square root.

Example 2

Find the size of the smallest angle in a triangle whose sides have lengths $3 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm .

Coastguard station B is 8 km , on a bearing of 060°, from coastguard station A. A ship C is 4.8 km , on a bearing of 018°, away from A. Calculate how far C is from B.

Problem-solving

If no diagram is given with a question you should draw one carefully. Double-check that the information given in the question matches your sketch.

In $\triangle A B C, \angle C A B=60^{\circ}-18^{\circ}=42^{\circ}$.

You now have $b=4.8 \mathrm{~km}, c=8 \mathrm{~km}$ and $A=42^{\circ}$. Use the cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$.

If possible, work this out in one go using your calculator.

Take the square root of $29.966 \ldots$ and round your final answer to 3 significant figures.

Example 4

In $\triangle A B C, A B=x \mathrm{~cm}, B C=(x+2) \mathrm{cm}, A C=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$.
Find the value of x.

Exercise 9A

Give answers to 3 significant figures, where appropriate.

1 In each of the following triangles calculate the length of the missing side.
a

b

c

d

e

f

2 In the following triangles calculate the size of the angle marked x :
a

b

c

d

e

f

3 A plane flies from airport A on a bearing of 040° for 120 km and then on a bearing of 130° for 150 km . Calculate the distance of the plane from the airport.

4 From a point A a boat sails due north for 7 km to B. The boat leaves B and moves on a bearing of 100° for 10 km until it reaches C. Calculate the distance of C from A.

5 A helicopter flies on a bearing of 080° from A to B, where $A B=50 \mathrm{~km}$.
It then flies for 60 km to a point C.
Given that C is 80 km from A, calculate the bearing of C from A.

6 The distance from the tee, T, to the flag, F, on a particular hole on a golf course is 494 yards. A golfer's tee shot travels 220 yards and lands at the point S, where $\angle S T F=22^{\circ}$.
Calculate how far the ball is from the flag.
(P) 7 Show that $\cos A=\frac{1}{8}$

(P) 8 Show that $\cos P=-\frac{1}{4}$

9 In $\triangle A B C, A B=5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$.
Calculate the size of the smallest angle.

10 In $\triangle A B C, A B=9.3 \mathrm{~cm}, B C=6.2 \mathrm{~cm}$ and $A C=12.7 \mathrm{~cm}$.
Calculate the size of the largest angle.
(P) 11 The lengths of the sides of a triangle are in the ratio $2: 3: 4$.

Calculate the size of the largest angle.

12 In $\triangle A B C, A B=(x-3) \mathrm{cm}, B C=(x+3) \mathrm{cm}, A C=8 \mathrm{~cm}$ and $\angle B A C=60^{\circ}$.
Use the cosine rule to find the value of x.
(P) 13 In $\triangle A B C, A B=x \mathrm{~cm}, B C=(x-4) \mathrm{cm}, A C=10 \mathrm{~cm}$ and $\angle B A C=60^{\circ}$.

Calculate the value of x.
(P) 14 In $\triangle A B C, A B=(5-x) \mathrm{cm}, B C=(4+x) \mathrm{cm}, \angle A B C=120^{\circ}$ and $A C=y \mathrm{~cm}$.
a Show that $y^{2}=x^{2}-x+61$.
b Use the method of completing the square to find the minimum value of y^{2}, and give the value of x for which this occurs.
(P) 15 In $\triangle A B C, A B=x \mathrm{~cm}, B C=5 \mathrm{~cm}, A C=(10-x) \mathrm{cm}$.
a Show that $\cos \angle A B C=\frac{4 x-15}{2 x}$
b Given that $\cos \angle A B C=-\frac{1}{7}$, work out the value of x.
(P) 16 A farmer has a field in the shape of a quadrilateral as shown.

Problem-solving

You will have to use the cosine rule twice. Copy the diagram and write any angles or lengths you work out on your copy.

The angle between fences $A B$ and $A D$ is 74°. Find the angle between fences $B C$ and $C D$.
E/P 17 The diagram shows three cargo ships, A, B and C, which are in the same horizontal plane. Ship B is 50 km due north of ship A and ship C is 70 km from ship A. The bearing of C from A is 020°.
a Calculate the distance between ships B and C, in kilometres to 3 s.f.
(3 marks)
b Calculate the bearing of ship C from ship B.
(4 marks)

9.2 The sine rule

The sine rule can be used to work out missing sides or angles in triangles.

- This version of the sine rule is used to find the length of a missing side:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

You can use the standard trigonometric ratios for right-angled triangles to prove the sine rule:

In a general triangle $A B C$, draw the perpendicular from C to $A B$. It meets $A B$ at X.
The length of $C X$ is h.

Use the sine ratio in triangle $C B X$.
$\sin B=\frac{h}{a} \Rightarrow h=a \sin B$

Online Explore the sine rule using GeoGebra.

$$
\begin{aligned}
& \text { and } \sin A=\frac{h}{b} \Rightarrow h=b \sin A \\
& \text { Use the sine ratio in triangle } C A X \text {. } \\
& \text { So } a \sin B=b \sin A \\
& \text { So } \frac{a}{\sin A}=\frac{b}{\sin B} \\
& \text { Divide throughout by } \sin A \sin B \text {. } \\
& \text { In a similar way, by drawing the perpendicular } \\
& \text { from } B \text { to the side } A C \text {, you can show that: } \\
& \frac{a}{\sin A}=\frac{c}{\sin C} \\
& \text { So } \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \text {. } \\
& \text { This is the sine rule and is true for all triangles. }
\end{aligned}
$$

- This version of the sine rule is used to find a missing angle:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Example 5

In $\triangle A B C, A B=8 \mathrm{~cm}, \angle B A C=30^{\circ}$ and $\angle B C A=40^{\circ}$. Find $B C$.

Example 6

In $\triangle A B C, A B=3.8 \mathrm{~cm}, B C=5.2 \mathrm{~cm}$ and $\angle B A C=35^{\circ}$. Find $\angle A B C$.

Here $a=5.2 \mathrm{~cm}, c=3.8 \mathrm{~cm}$ and $A=35^{\circ}$. You first need to find angle C.

$$
\begin{array}{rlrl}
\frac{\sin C}{c} & =\frac{\sin A}{a} & \begin{array}{ll}
\frac{\sin C}{3.8} & =\frac{\sin 35^{\circ}}{5.2} \\
\text { So } \sin C & =\frac{3.8 \sin 35^{\circ}}{5.2} \\
C & =24.781 \ldots
\end{array} & \begin{array}{l}
\text { Use } \frac{\sin C}{c}=\frac{\sin A}{a} \\
\text { Write the formula you are going to use as the first } \\
\text { line of working. }
\end{array} \\
\text { So } B & =120^{\circ}(3 \text { s.f. }) & \begin{array}{l}
\text { Use your calculator to find the value of } C \text { in a } \\
\text { single step. Don't round your answer at this point. }
\end{array} \\
B=180^{\circ}-\left(24.781 \ldots{ }^{\circ}+35^{\circ}\right)=120.21 \ldots \text { which }
\end{array}
$$

Exercise 9B

Give answers to 3 significant figures, where appropriate.
1 In each of parts a to d, the given values refer to the general triangle.
a Given that $a=8 \mathrm{~cm}, A=30^{\circ}, B=72^{\circ}$, find b.
b Given that $a=24 \mathrm{~cm}, A=110^{\circ}, C=22^{\circ}$, find c.
c Given that $b=14.7 \mathrm{~cm}, A=30^{\circ}, C=95^{\circ}$, find a.
d Given that $c=9.8 \mathrm{~cm}, B=68.4^{\circ}, C=83.7^{\circ}$, find a.

2 In each of the following triangles calculate the values of x and y.

b

d

Hint In parts \mathbf{c} and \mathbf{d}, start by finding the size of the third angle.
e

3 In each of the following sets of data for a triangle $A B C$, find the value of x.
a $A B=6 \mathrm{~cm}, B C=9 \mathrm{~cm}, \angle B A C=117^{\circ}, \angle A C B=x$
b $A C=11 \mathrm{~cm}, B C=10 \mathrm{~cm}, \angle A B C=40^{\circ}, \angle C A B=x$
c $A B=6 \mathrm{~cm}, B C=8 \mathrm{~cm}, \angle B A C=60^{\circ}, \angle A C B=x$
d $A B=8.7 \mathrm{~cm}, A C=10.8 \mathrm{~cm}, \angle A B C=28^{\circ}, \angle B A C=x$

4 In each of the diagrams shown below, work out the size of angle x.

5 In $\triangle P Q R, Q R=\sqrt{3} \mathrm{~cm}, \angle P Q R=45^{\circ}$ and $\angle Q P R=60^{\circ}$. Find $\mathbf{a} P R$ and $\mathbf{b} P Q$.
6 In $\triangle P Q R, P Q=15 \mathrm{~cm}, Q R=12 \mathrm{~cm}$ and $\angle P R Q=75^{\circ}$. Find the two remaining angles.

7 In each of the following diagrams work out the values of x and y.

(P) 8 Town B is 6 km , on a bearing of 020°, from town A. Town C is located on a bearing of 055° from town A and on a bearing of 120° from town B. Work out the

Problem-solving
Draw a sketch to show the information. distance of town C from:
a town A
b town B

9 In the diagram $A D=D B=5 \mathrm{~cm}, \angle A B C=43^{\circ}$
and $\angle A C B=72^{\circ}$.
Calculate:
a $A B$
b $C D$

10 A zookeeper is building an enclosure for some llamas. The enclosure is in the shape of a quadrilateral as shown. If the length of the diagonal $B D$ is 136 m
a find the angle between the fences $A B$ and $B C$
b find the length of fence $A B$

E/P 11 In $\triangle A B C, A B=x \mathrm{~cm}, B C=(4-x) \mathrm{cm}$, $\angle B A C=y$ and $\angle B C A=30^{\circ}$.
Given that $\sin y=\frac{1}{\sqrt{2}}$, show that

Problem-solving

You can use the value of $\sin y$ directly in your calculation. You don't need to work out the value of y.

$$
x=4(\sqrt{2}-1)
$$

(5 marks)
(E/P) 12 A surveyor wants to determine the height of a building. She measures the angle of elevation of the top of the building at two points 15 m apart on the ground.
a Use this information to determine the height of the building.
(4 marks)
b State one assumption made by the surveyor in using this mathematical model. (1 mark)

For given side lengths b and c and given angle B, you can draw the triangle in two different ways.

Since $A C_{1} C_{2}$ is an isosceles triangle, it follows that the angles $A C_{1} B$ and $A C_{2} B$ add together to make 180°.

- The sine rule sometimes produces two possible solutions for a missing angle:

Links You can confirm this relationship by considering the graph of $y=\sin x$.

\rightarrow Section 9.5 and Chapter 10

- $\sin \theta=\boldsymbol{\operatorname { s i n }}\left(\mathbf{1 8 0} \mathbf{o}^{\circ}-\theta\right)$

Example 7

In $\triangle A B C, A B=4 \mathrm{~cm}, A C=3 \mathrm{~cm}$ and $\angle A B C=44^{\circ}$. Work out the two possible values of $\angle A C B$.

Exercise 9C

Give answers to 3 significant figures, where appropriate.

1 In $\triangle A B C, B C=6 \mathrm{~cm}, A C=4.5 \mathrm{~cm}$ and $\angle A B C=45^{\circ}$.
a Calculate the two possible values of $\angle B A C$.
b Draw a diagram to illustrate your answers.

2 In each of the diagrams shown below, calculate the possible values of x and the corresponding values of y.

c

3 In each of the following cases $\triangle A B C$ has $\angle A B C=30^{\circ}$ and $A B=10 \mathrm{~cm}$.
a Calculate the least possible length that $A C$ could be.
b Given that $A C=12 \mathrm{~cm}$, calculate $\angle A C B$.
c Given instead that $A C=7 \mathrm{~cm}$, calculate the two possible values of $\angle A C B$.
(P) 4 Triangle $A B C$ is such that $A B=4 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $\angle A C B=36^{\circ}$. Show that one of the possible values of $\angle A B C$ is 25.8° (to 3 s.f.). Using this value, calculate the length of $A C$.
(P) 5 Two triangles $A B C$ are such that $A B=4.5 \mathrm{~cm}, B C=6.8 \mathrm{~cm}$ and $\angle A C B=30^{\circ}$. Work out the value of the largest angle in each of the triangles.

E/P 6 a A crane $\operatorname{arm} A B$ of length 80 m is anchored at point B at an angle of 40° to the horizontal. A wrecking ball is suspended on a cable of length 60 m from A. Find the angle x through which the wrecking ball rotates as it passes the two points level with the base of the crane arm at B.
(6 marks)
b Write down one modelling assumption you have made.
(1 mark)

9.3 Areas of triangles

You need to be able to use the formula for finding the area of any triangle when you know two sides and the angle between them.

- Area $=\frac{1}{2} a b \sin C$

Hint As with the cosine rule, the letters are interchangeable. For example, if you know angle B and sides a and c, the formula becomes Area $=\frac{1}{2} a c \sin B$.

A proof of the formula:

Example 8

Work out the area of the triangle shown below.

Online Explore the area of a triangle using GeoGebra.

Here $b=6.9 \mathrm{~cm}, c=4.2 \mathrm{~cm}$ and angle $A=75^{\circ}$,

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} b c \sin A \\
& \text { Area of } \begin{aligned}
\triangle A B C & =\frac{1}{2} \times 6.9 \times 4.2 \times \sin 75^{\circ} \mathrm{cm}^{2} \\
& =14.0 \mathrm{~cm}^{2}(3 \text { s.f. })
\end{aligned}
\end{aligned}
$$

so use:
Area $=\frac{1}{2} b c \sin A$.

Example 9

In $\triangle A B C, A B=5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $\angle A B C=x$. Given that the area of $\triangle A B C$ is $12 \mathrm{~cm}^{2}$ and that $A C$ is the longest side, find the value of x.

1 Calculate the area of each triangle.

b

2 Work out the possible sizes of x in the following triangles.

3 A fenced triangular plot of ground has area $1200 \mathrm{~m}^{2}$. The fences along the two smaller sides are 60 m and 80 m respectively and the angle between them is θ. Show that $\theta=150^{\circ}$, and work out the total length of fencing.
(P) 4 In triangle $A B C, B C=(x+2) \mathrm{cm}$, $A C=x \mathrm{~cm}$ and $\angle B C A=150^{\circ}$. Given that the area of the triangle is $5 \mathrm{~cm}^{2}$, work out the value of x, giving your answer to 3 significant figures.

E/P 5 In $\triangle P Q R, P Q=(x+2) \mathrm{cm}, P R=(5-x) \mathrm{cm}$ and $\angle Q P R=30^{\circ}$.
The area of the triangle is $A \mathrm{~cm}^{2}$.
a Show that $A=\frac{1}{4}\left(10+3 x-x^{2}\right)$.
b Use the method of completing the square, or otherwise, to find the maximum value of A, and give the corresponding value of x.

E/P 6 In $\triangle A B C, A B=x \mathrm{~cm}, A C=(5+x) \mathrm{cm}$ and $\angle B A C=150^{\circ}$. Given that the area of the triangle is $3 \frac{3}{4} \mathrm{~cm}^{2}$

Problem-solving

x represents a length so it must be positive.
a Show that x satisfies the equation $x^{2}+5 x-15=0$.
b Calculate the value of x, giving your answer to 3 significant figures.

